
DreamMaker FX Documentation

DreamMaker

Apr 03, 2020

TUTORIAL:

1 Introduction 1
1.1 Option 1: No programming at all! . 1
1.2 Option 2: Start building your own creations with Arduino . 1
1.3 What is that word, Arduino? . 2

2 Hear it in action 3
2.1 Perpetuity . 3
2.2 Pentatonic Theramin . 3
2.3 Multitudes . 4
2.4 Stereo Reverb . 4
2.5 Polyphonic Guitar Synth . 4

3 Meet the Hardware 5
3.1 Gen 1: The Dream Lemur . 5
3.2 Gen 2: The Beyonder . 6

4 Installation 9
4.1 First time installation . 9
4.2 Updating the DreamMaker FX Arduino package . 10

5 The Anatomy of an Effect 13

6 Tutorial #1: Basic Delay Pedal 15
6.1 Basic Arduino anatomy . 15
6.2 1. Add the effects library of functions . 15
6.3 2. Add any effects or synthesis objects . 15
6.4 3. Route the effect into our pedal . 16
6.5 4. Add service function to our loop . 16
6.6 Bringing it all together . 17
6.7 Running the effect on hardware . 17

7 The basics of creating / adding effects 19

8 The basics of routing audio 21
8.1 Effect audio nodes . 21
8.2 System audio nodes . 21
8.3 Connecting nodes . 21
8.4 A few routing rules . 23

9 The basics of controlling effects 25
9.1 Option 1: Using effect control nodes . 25

i

9.2 Option 2: Directly controlling parameters . 26
9.3 Option 3: Controlling effects with external sensors . 27

10 Buttons, Knobs and Lights 29
10.1 Configuring the Buttons (aka Footswitches) . 29
10.2 1. Configuring the button as a pedal bypass switch . 29
10.3 2. Configuring the button to be a tap delay/tempo button . 30
10.4 3. Configuring the button to be a momentary switch . 31
10.5 4. Configuring the button to be a toggle switch . 31
10.6 Configuring the Knobs (aka Pots) . 32
10.7 Turning on and off the Lights (aka LEDs) . 33

11 Using the API 35
11.1 Special parameters and constants . 36

12 Debugging Sketches 39

13 General troubleshooting 41
13.1 Issue: DM_FX volume not showing up when plugging pedal into USB port 41
13.2 Issue: SAM-BA operation failed error while downloading an Arduino sketch 41
13.3 Issue: After downloading my sketch, one footswitch LED is on and the other is periodically strobing 41
13.4 Issue: I am getting a “bad CPU type in executable” error when compiling my sketch 42
13.5 Issue: When building my sketch, error “dreammakerfx.h: No such file or directory” 42
13.6 Placing the pedal in bootloader mode . 42

14 Class fx_pedal 43
14.1 Class Documentation . 43

15 Class fx_led 49
15.1 Class Documentation . 49

16 Class fx_pot 53
16.1 Class Documentation . 53

17 Class fx_switch 55
17.1 Class Documentation . 55

18 Class fx_adsr_envelope 57
18.1 Inheritance Relationships . 57
18.2 Class Documentation . 57

19 Class fx_amplitude_mod 61
19.1 Inheritance Relationships . 61
19.2 Class Documentation . 61

20 Class fx_arpeggiator 65
20.1 Inheritance Relationships . 65
20.2 Class Documentation . 65

21 Class fx_biquad_filter 69
21.1 Inheritance Relationships . 69
21.2 Class Documentation . 69

22 Class fx_compressor 73
22.1 Inheritance Relationships . 73
22.2 Class Documentation . 73

ii

23 Class fx_delay 77
23.1 Inheritance Relationships . 77
23.2 Class Documentation . 77

24 Class fx_destructor 81
24.1 Inheritance Relationships . 81
24.2 Class Documentation . 81

25 Class fx_envelope_tracker 85
25.1 Inheritance Relationships . 85
25.2 Class Documentation . 85

26 Class fx_gain 87
26.1 Inheritance Relationships . 87
26.2 Class Documentation . 87

27 Class fx_instrument_synth 89
27.1 Inheritance Relationships . 89
27.2 Class Documentation . 89

28 Class fx_looper 93
28.1 Inheritance Relationships . 93
28.2 Class Documentation . 93

29 Class fx_multitap_delay 97
29.1 Inheritance Relationships . 97
29.2 Class Documentation . 97

30 Class fx_oscillator 99
30.1 Inheritance Relationships . 99
30.2 Class Documentation . 99

31 Class fx_phase_shifter 101
31.1 Inheritance Relationships . 101
31.2 Class Documentation . 101

32 Class fx_pitch_shift 103
32.1 Inheritance Relationships . 103
32.2 Class Documentation . 103

33 Class fx_pitch_shift_fd 105
33.1 Inheritance Relationships . 105
33.2 Class Documentation . 105

34 Class fx_ring_mod 109
34.1 Inheritance Relationships . 109
34.2 Class Documentation . 109

35 Class fx_slicer 111
35.1 Inheritance Relationships . 111
35.2 Class Documentation . 111

36 Class fx_variable_delay 113
36.1 Inheritance Relationships . 113
36.2 Class Documentation . 113

iii

Index 117

iv

CHAPTER

ONE

INTRODUCTION

Welcome the DreamMaker FX! This is an audio platform that designed to help musicians and effect designers to
explore and create effects and synths that have never been heard before.

It is designed to be accesible for experienced programmers and those who have done no programming.

At its core, this platform consists of a microprocessor connected to a powerful SHARC DSP. SHARC DSPs are
specialized audio processors used in lots of high-end audio gear. But we don’t need to worry about writing DSP code
or dealing with the complexities of DSP system design.

Beyond audio processing, the DreamMaker FX hardware offers lots of options for expanding the hardware. External
sensors can be easily wired and connected to various effect parameters.

1.1 Option 1: No programming at all!

When you plug the DreamMakerFX pedal into your Mac or PC, it will show up as a mounted drive (DM_FX). You
can download a “UF2” file of the sketch right to that drive and it will start running. This is a great option if you have
no interest in programming and just wnat to start playing through some of the creations you find on this site!

1.2 Option 2: Start building your own creations with Arduino

Arduino is a programming platform that is designed to make programming easier and more accessible than it normally
is. With just a few lines of code, you can begin creating your own pedal creations.

There are a few ways you can get started:

• Download a “pedal pack” from the Browse Pedals page and start playing with these

• Download a pedal design that someone else has created on this site.

• Start with the Basic echo pedal tutorial and start building from the ground up!

1

DreamMaker FX Documentation

1.3 What is that word, Arduino?

Have you heard about Arduino? If not, Arduino is this little circuit board created about 10 years ago which was
designed to make programming hardware easy. I won’t bore you with the details but that shit got huge. Now lots
of people make Arduino-compatible boards (that use their simple programming software) and accessory boards with
sensors and other batshit crazy stuff.

So rather than learning some arcane programming language and software tools, you’re using one of the easiest pro-
gramming tools ever created. And there are plenty of resources for learning and getting help out there. Here’s a great
set of tutorials to get started if you’re new to Arduino in general:

https://www.arduino.cc/en/Tutorial/HomePage?from=Main.Tutorials

Okay, so buckle in and get ready to blow some minds.

2 Chapter 1. Introduction

https://www.arduino.cc/en/Tutorial/HomePage?from=Main.Tutorials

CHAPTER

TWO

HEAR IT IN ACTION

Here are a few examples of effects created on the DreamMaker FX Platform.

2.1 Perpetuity

Link to effect on DreamMakerFx.com: https://www.dreammakerfx.com/pedal-designs/Perpetuity

This effect allows you to “catch” a note which will ring out indefinitely.

Hold down the left footswtich to “catch” a note which will ring out indefinitely. Press and hold down the left footswitch
to layer on more notes to create a sonic canvas to play over. Tap the right footswitch to release the held notes. When
the left footswich is held down to capture notes, the clean channel is muted so you only hear the swell of the capture
droning notes. This effect works by running the notes through an ADSR envelope so it quickly fades in and then fades
out. This audio is then sent to four delay lines that are staggered so the attack / decay of the note becomes a solid wall
of sound.

2.2 Pentatonic Theramin

Link to effect on DreamMakerFx.com: https://www.dreammakerfx.com/pedal-designs/Pentatonic-Theramin

This effect doesn’t use an instrument at all. Or rather, you are the instrument. This effect requires a SparkFun distance
sensor connected to the sensor port on the DreamMaker FX (https://www.sparkfun.com/products/14722).

It uses the synth engine along with some gentle effects to create a theramin that operates over the pentatonic scale.
And when there is nothing in front of the sensor, the tones turn off.

Sensors can be wired to really any effect parameter so it creates a lot of interesting opportunities for new kinds of
expression.

3

https://www.dreammakerfx.com/pedal-designs/Perpetuity
https://www.dreammakerfx.com/pedal-designs/Pentatonic-Theramin
https://www.sparkfun.com/products/14722

DreamMaker FX Documentation

2.3 Multitudes

Link to effect on DreamMakerFx.com: https://www.dreammakerfx.com/pedal-designs/Multitudes

A cool, multi-layer delay effect created by Joe Dougherty. Consists of a variable length delay pedal where the feedback
path of the main delay (“driver”) is routed to a secondary delay (“propagator”).

2.4 Stereo Reverb

With the immense amount of processing power and on-board RAM, we can create very rich, intricate reverbs using a
few of the building blocks (multi-tap delays, all-pass filters, biquad filters, variable delays, and regular delays).

Here’s an example of a stereo reverb that consumes about 10% of the available processing resources on the SHARC
DSP.

2.5 Polyphonic Guitar Synth

Link to effect on DreamMakerFx.com: https://www.dreammakerfx.com/pedal-designs/Polyphonic-guitar-synth-pedal

The DreamMaker FX platform can track multiple notes being played simultaneouly and create various synth effects
from these notes.

This is a polyphonic guitar synth meaning that it tracks multiple strings. It uses an FM synth engine along with ADSR
envelope generator and an output filter. The pedal is configured by default to use a triangle (OSC_TRIANGLE) wave
that is modulated with a sine wave (OSC_SINE). However, lots of interesting sounds can be created by swapping these
out with out types of oscillators (e.g. OSC_SQUARE, OSC_RAMP_POS, OSC_RAMP_NEG, OSC_RANDOM, etc).

4 Chapter 2. Hear it in action

https://www.dreammakerfx.com/pedal-designs/Multitudes
https://www.dreammakerfx.com/pedal-designs/Polyphonic-guitar-synth-pedal

CHAPTER

THREE

MEET THE HARDWARE

3.1 Gen 1: The Dream Lemur

The first generation hardware was designed in the spring of 2019 and manufactured during the summer.

Features:

• 450MHz SHARC DSP + SAMD51 processor (running Arduino stuff)

• Stereo in / Stereo out @ 48kHz sampling rate

• Short (QWIIC) and long range (CAT-5) sensor interfaces

• Wireless sensor interface (via RF transceiver)

• USB connector (for programming and debug)

• 3 pots

• 2 footswitches

• 2 red LEDs

5

DreamMaker FX Documentation

3.2 Gen 2: The Beyonder

The design for the second generation hardware began as soon as we started using the first generation and realized all
the things that could be improved. Our first gen-2 hardware is in house and working great so far.

Features

• 450MHz SHARC DSP + SAMD51 processor (running Arduino stuff)

• Stereo in / Stereo out @ 48kHz sampling rate

• Expression pedal

• MIDI in / out

• Short (QWIIC) and long range (CAT-5) sensor interfaces

• USB connector (for programming and debug)

• 5 pots

6 Chapter 3. Meet the Hardware

DreamMaker FX Documentation

• 2 footswitches

• 3 RGB LEDs

• 2 3-way toggles

3.2. Gen 2: The Beyonder 7

DreamMaker FX Documentation

8 Chapter 3. Meet the Hardware

CHAPTER

FOUR

INSTALLATION

This page offers instructions for first time installs and subsequent updates. Half the fun of this platform is that it is
always evolving with new modules and capabilities. Once you have the Arduino tools installed, you can check for
DreamakerFX updates which bring with them new capabilities and enhancements!

4.1 First time installation

The DreamMaker FX hardware currently supports Windows 10, OS X, and probably Linux. If you’re running Win-
dows 7, there are a few additional steps that are required to get the UF2 USB device drivers installed.

First order of business, let’s go download some free software and get rolling.

• Download and install the Arduino IDE: https://www.arduino.cc/en/main/software

– Accept the defaults

– You may be prompted to install several additional drivers; install them.

– If you’re running OS X Catalina, make sure you’re using Arduino v1.8.10 or later.

– Click Finish when the installs are complete.

• Plug the Dream Lemur into an outlet, and connect to a USB port on your computer with a MicroUSB cable.
Make sure the USB cable you are using is not a charging cable. There are lots of microUSB charging cables out
there that just have wires for power and ground and no data! If you don’t see the DM_FX drive/volume show up
on your computer, you may need to put your pedal into bootloader mode. See the Troubleshooting section for
details on how to do this.

• Install the DreamMaker FX Arduino board package In the Arduino IDE:

– Navigate to either File -> Preferences on Windows, or Arduino -> Preferences on Mac. If
you’re using Linux, we assume you’re enough of a bad ass to figure out what to do.

– In the preferences window, find the text field toward the bottom called Additional Boards
Manager URLs.

– Copy and paste the following into that text field: https://runjumplabs.github.io/
arduino-board-index/package_dreammaker_fx_index.json

– Click OK to close the preferences window.

– Navigate to Tools -> Board -> Board Manager.

9

https://www.dreammakerfx.com/troubleshooting

DreamMaker FX Documentation

– Either type dream in the search box, or scroll down until you find DreamMaker FX by Run Jump
Labs.

– Click Install. This will take a few minutes; then hit Close.

DreamMaker
FX package

• Select the DreamMaker FX hardeare

– Navigate to Tools -> Board. At the very bottom of the list you should see DreamMaker FX
(SAMD51/ARM Cortex M4. Select it.

DreamMaker
FX package

• Make some bitchin’ effects and play some rock and/or roll very loudly.

The setup process is very similar to Adafruit boards which use the same Arduino processor (Atmel SAMD51 family).
This page may offer some additional help https://learn.adafruit.com/adafruit-metro-m4-express-featuring-atsamd51/
setup.

4.2 Updating the DreamMaker FX Arduino package

There are always updates happening with new effects, bug fixes and improvements! When you do a first time install,
you’ll have the latest and greatest. However, it’s always good to check back to see if there are updates.

• In the Arduino program:

– Navigate to Tools -> Board -> Board Manager.

– Either type dream in the search box, or scroll down until you find DreamMaker FX by Run Jump
Labs.

– Select the latest version from the pull-down menu; then hit Update

10 Chapter 4. Installation

https://learn.adafruit.com/adafruit-metro-m4-express-featuring-atsamd51/setup
https://learn.adafruit.com/adafruit-metro-m4-express-featuring-atsamd51/setup

DreamMaker FX Documentation

A cool feature is that the firmware running on the DSP is automatically updated the first time you download a sketch
after an update to the latest version. When you download the effect, you’ll see some messages in the serial monitor
that the update is happening (just takes a few seconds). The firmware update only happens when the system detects
that the firmware on the DSP is a different version than what is running in the Arduino code.

4.2. Updating the DreamMaker FX Arduino package 11

DreamMaker FX Documentation

12 Chapter 4. Installation

CHAPTER

FIVE

THE ANATOMY OF AN EFFECT

Let’s start by learning the anatomy of a basic Arduino “Sketch” (aka “program” in Arduino speak).

With the Arduino app open, go to File->New. You’ll see a new text editor window appear with a new “sketch”. This
sketch will come pre-populated with two functions. One is called setup() and another is called loop().

When the sketch is downloaded to our hardware, it will first run any commands in the setup() function once. And
then it will run the loop() function repeatidly. Each time you power up the board, it goes through the same sequence
(run setup() once and then run loop() indefinitely).

When creating effects, there are three places we’ll add code.

First (in area #1), we’ll define / “declare” which effects building blocks we’ll be using at the very top of the file. We
can declare up to 100 effect blocks (for example, if you wanted to create 100 delay lines and wire them together, go
for it!).

Next (in area #2), we’ll define how these building blocks connect to the audio in / out jacks and to each other. We can
also route control signals between the effect blocks here too.

Finally (in area #3), we’ll add any real-time controls of the effect parameters. This is where we, for example, respond
to a pressed footswtich, changed knob or switch.

13

DreamMaker FX Documentation

Anatomy
of an effect

While some effects may look complex at first glace, they all really have these three components.

14 Chapter 5. The Anatomy of an Effect

CHAPTER

SIX

TUTORIAL #1: BASIC DELAY PEDAL

As mentioned earlier, one doesn’t have to be an experienced programmer to use this platform. The coding patterns for
creating various effect and synth components, wiring them together and controlling their parameters is pretty straight
forward.

6.1 Basic Arduino anatomy

Let’s start by creating a simple echo effect to see how the pieces fit together.

6.2 1. Add the effects library of functions

At the top of the file, we’ll add a line that will link in all of the functions, variables and objects that you’ll use to create
your effects. At the very top of the file, add #include <dreammakerfx.h>. You’ll add this line to the top of
every Arduino sketch you create for this platform.

// Include DreamMaker FX library of effects routines
#include <dreammakerfx.h>

6.3 2. Add any effects or synthesis objects

Above the setup routine, we will add (aka declare) any effect and synth objects that we’ll be using. When we add an
object, in many cases we will also provide the initial parameters.

In this case, we are going to create a single echo / delay effect object and name it my_echo_1. When we initialize an
echo object, it takes two arguments or initial parameters. The first is how long the echo is in milliseconds (1000th of
a second). And the second is the feedback ratio (between 0.0 and 1.0) which determines how much audio is fed back
into the echo and thus how long the echo lasts. If feedback is set to 1.0, it will echo forever. And if feedback is set to
0.0, it won’t echo at all. Let’s set the echo length to be 1 second (or 1000 milliseconds) and the feedback ratio at 0.7.

Add the following code after your #include <dreammakerfx.h> line.

15

DreamMaker FX Documentation

// Create/declare one echo effect and configure it
fx_delay my_echo_1(1000.0, // 1 second echo

0.7); // 0.7 feedback ratio

6.4 3. Route the effect into our pedal

Next, in the setup() routine, we need to initialize our effects pedal and route the audio from the pedal in and out
jacks through the various effects and synth objects we’re using.

void setup() {

pedal.init();

// Connect our effect(s) to input and output jacks
pedal.route_audio(pedal.instr_in, my_echo_1.input); // Instr in ->

→˓echo in
pedal.route_audio(my_echo_1.output, pedal.amp_out); // Echo out ->

→˓Amp out

pedal.run(); // Run the effect

}

Let’s deconstruct what we just did here.

First, we called the pedal.init(); function to set up our system.

Next, we connected the audio from the input jack of our pedal (aka instr_in) to the input of our echo object (aka
my_echo_1.input) using the route_audio() function.

Each effect and synthesis object has a set of input and outputs that can “routed” or virtually “wired” together. There
are also some inputs and outputs that are part of the pedal itself. Presently, there is an instr_in input (audio in from
our instrument) and amp_out output (audio out towards our amp).

In this case, we just have one object. We routed / wired the instr_in to the input of our my_echo_1 object. And then
we routed / wired the output of our my_echo_1 object to the pedal output.

And finally, we call pedal.run(); which takes our effect configuration, performs the magic, sends it over to the
DSP where the effects are run.

6.5 4. Add service function to our loop

The last thing we need to do is add the pedal.service(); function call in our loop() function. This function
basically checks in the with the DSP, updates any parameters that need to be updated, and retrieves information from
the DSP.

void loop() {
// put your main code here, to run repeatedly:

(continues on next page)

16 Chapter 6. Tutorial #1: Basic Delay Pedal

DreamMaker FX Documentation

(continued from previous page)

// sweet nothings to/from DSP
pedal.service();

}

6.6 Bringing it all together

Let’s now look at the whole echo effect:

// Include our library of effects routines
#include <dreammakerfx.h>

// Create/declare one echo effect and configure it
fx_delay my_echo_1(1000.0, // 1 second echo

0.7); // 0.7 feedback ratio

void setup() {

pedal.init(); // Initialize the system

// Connect our effect(s) to input and output jacks
pedal.route_audio(pedal.instr_in, my_echo_1.input); // Instr in ->

→˓echo in
pedal.route_audio(my_echo_1.output, pedal.amp_out); // Echo out ->

→˓Amp out

pedal.run(); // Run the effect

}

void loop() {
// put your main code here, to run repeatedly:

// sweet nothings to/from DSP
pedal.service();

}

So you’ve just created a basic echo stomp box - congratulations!

6.7 Running the effect on hardware

Navigate to Tools -> Serial Monitor. This will bring up the console log. When your effect configuration is processed
on the Arduino processor, some information will be sent to the console letting you know how things were routed and
everything is okay. You’ll also see the telemtry data from the DSP too so you can see if any effect failed to initialize
or something went wrong.

Click the Upload button in the upper-left hand side of the Arduino IDE (it’s the arrow pointing to the right). Your
code will compile and then download to the board. After a second or two, you’ll hear the echo effect applied to any
audio you send through the pedal!

6.6. Bringing it all together 17

DreamMaker FX Documentation

Once you have downloaded an effect, it is stored in memory on the pedal. If you disconnect the pedal and plug it in
later, it will start up running the same effect. To overwrite the effect currently stored in the pedal, just press the reset
button twice in quick success to upload a new effect.

18 Chapter 6. Tutorial #1: Basic Delay Pedal

CHAPTER

SEVEN

THE BASICS OF CREATING / ADDING EFFECTS

As you hopefully remember from 12 seconds ago, we create/declare the effects we want to use at the top of program.

// Create/declare one echo effect and configure it
fx_delay my_echo_1(1000.0, 0.7);

The first word (which in this case is fx_delay) is the type of effect we want to create. The API docs (and the next
section) contain the complete list of the effects that are available.

We then provide a name for our effect object (which in the example above is my_echo_1). This needs to be a unique
word with no spaces (just characters and underscores really).

And finally, we provide the initial parameters for that effect (i.e. where the knobs are set initially).

Again, the Effect Blocks section on the left contains documentation for each of the various effect blocks that are
available.

What’s neat is that this object then becomes its own stand-alone effect. We can create multiple objects of the same
type in our program (i.e. multiple delays in this case) that each have their own parameters and which are each wired-in
in their own ways.

// Create/declare one echo effect and configure it
fx_delay my_echo_1(1000.0, 0.7);
fx_delay my_echo_2(2000.0, 0.8); // Totally legit!

Just make sure each object you create/declare in your system has a unique name even if they are different effect types.
For example, don’t do this:

// Create/declare one echo effect and configure it
fx_delay ricky_bobby(1000.0, 0.7);
fx_pitch_shift ricky_bobby(0.8); // BAD! DON'T DO THIS, ricky_bobby already
→˓exists!

Oh yeah, this is important: in some cases an effect will have a few different ways you can initialize it. Most effects
have a simple initializer that you just need to pass one or two values to. And, they may have a more advanced initializer
that allows you to do ever more things with that effect. Usually the advanced initializer is a super-set of the simple
initializer.

Here’s an example of us initializing two fx_amplitude_mod objects with both the simple and advanced initializer
functions:

fx_amplitude_mod tremelo_1(1.0, // Rate is 1Hz
0.5); // Depth is 0.5 (0->1)

fx_amplitude_mod tremelo_2(1.0, // Rate is 1Hz

(continues on next page)

19

DreamMaker FX Documentation

(continued from previous page)

0.5, // Depth is 0.5 (0->1)
OSC_TRI, // Modulation waveform is triangle instead of

→˓sine
false); // Not using an external signal as our

→˓modulator

The beauty of this is that we have a DSP platform with tons of memory and lots of DSP processing power so you can
create effects that incorporate several different individual effect objects / instances.

20 Chapter 7. The basics of creating / adding effects

CHAPTER

EIGHT

THE BASICS OF ROUTING AUDIO

Get ready because we’re going to start using the word node a lot. I hope that’s okay. A node is what it sounds like: it’s
a node. Or a point of connection.

8.1 Effect audio nodes

Each effect has one or more nodes that can pipe audio into it or out of it. All effects that process audio have both an
input node and an output node. Things like an envelope tracker that are just measuring an audio signal may just
have an audio input node but no audio output node. Also, some effects have additional nodes beyond input and
output and this is where shit gets real. Did you see the movie Inception? That question will make sense eventually.

Details on the nodes that each effect has can be found in Appendix A.

8.2 System audio nodes

And the system has nodes for input from instrument and output to amp.

• pedal.instr_in is the input jack of the pedal. This might blow your mind, but this is actually an output
jack in the sense that it is outputting audio that we can send to the inputs of other effects.

• pedal.amp_out is the output hack of the pedal. This might blow your mind again, but this is actually an
input jack in the sense that it is receiving audio from other effects (and then sending to the amp).

8.3 Connecting nodes

As we just saw in the echo example, there is a function called route_audio that we use to connect our effects to
the input and output jacks of the pedal and also to each other. The first argument of this function is an output node and
the second argument is an input node.

Let’s use it in a (programming) sentence. In this example, we’re going to have a tremelo that then feeds into a delay.
It’ll be like having your guitar plugged into a tremelo pedal that then plugs into a delay pedal that then plugs into your
amp.

(note: if it’s not yet obvious, you can call each effect you create just about whatever you want).

21

DreamMaker FX Documentation

// Create objects for these effects
fx_amplitude_mod happy_tremelo(1.0, 0.5); // 1Hz rate, 0.5 depth
fx_delay sweet_baby_echo(1000.0, 0.7); // 1000ms, 0.7 feedback

void setup() {
pedal.init(); // Initialize the system

// Route tremelo through echo/delay effect
pedal.route_audio(pedal.instr_in, happy_tremelo.input);
pedal.route_audio(happy_tremelo.output, sweet_baby_echo.input);
pedal.route_audio(sweet_baby_echo.output, pedal.amp_out);

pedal.run(); // Run the effect
}

Or let’s get more crazy. Let’s say we have a delay pedal and each time through the delay, we’re going to pitch shift up.
So it would sound like this: ECHO Echo echo echo (where each time you say ‘echo’ you say it in a lower pitch voice).

The fx_delay has two additional nodes called fx_send and fx_receive. We’re going to run these through our
handy-dandy pitch shifter. For this, we’re going to use the more advanced delay setup function that allows us to pass
a few additional parameters (more info in Appendix A on this):

// Create objects for these effects
fx_delay echoey_snail(1000.0, // Delay length: 1000ms

1000.0, // Max delay length: 1000ms
0.7, // Feedback: 0.7
1.0, // Feedthrough: 1.0
true); // Enable delay fx loop

fx_pitch_shift shift_down(0.85); // Pitch shift down 0.85 x current pitch

void setup() {
pedal.init(); // Initialize the system

// input -> delay -> output
pedal.route_audio(pedal.instr_in, echoey_snail.input);
pedal.route_audio(echoey_snail.output, pedal.amp_out);

// Now patch in pitch shifter into delay fx loop
pedal.route_audio(echoey_snail.fx_send, shift_down.input);
pedal.route_audio(shift_down.output, echoey_snail.fx_receive);

pedal.run(); // Run the effect
}

Pretty cool, right?

22 Chapter 8. The basics of routing audio

DreamMaker FX Documentation

8.4 A few routing rules

Obey these rules to avoid humiliation and sadness:

An output node can be routed to multiple input nodes

pedal.route_audio(pedal.instr_in, delay_1.input);
pedal.route_audio(pedal.instr_in, delay_2.input);

An input node can only have one input. However, you can use the fx_mixer nodes if you want to send multiple
outputs to an input.

pedal.route_audio(delay_1.output, my_mixer_2.input_1);
pedal.route_audio(delay_2.output, my_mixer_2.input_2);
pedal.route_audio(my_mixer_2, pedal.amp_out);

And you can’t route input nodes to other input nodes, or output nodes to other output nodes. It’s always output->input.

8.4. A few routing rules 23

DreamMaker FX Documentation

24 Chapter 8. The basics of routing audio

CHAPTER

NINE

THE BASICS OF CONTROLLING EFFECTS

We’ve been talking a lot about getting effects set up and running. Now let’s talk about how to change the proverbial
knobs on the effects once they’re running.

Now, take a deep breath and get comfortable because this next sentence is important. There are two ways we can
control effects:

1. we can use other effects that generate control signals (like the envelope tracker) to control the parameters of
other effects or. . .

2. we can control the parameters directly from our Arduino program.

9.1 Option 1: Using effect control nodes

Similar to our audio nodes, all effects have several control nodes that are inputs for controlling their individual param-
eters (like delay length and feedback). Some effects have control node outputs like the envelop filter which are control
signals based on the audio going through these effects.

Remember when you read “an envelope tracker is just measuring an audio signal and may just have an audio input
node but no audio output node”? Well, the envelop tracker has an audio input node and a control output node.
Similarly, a synth have a control input node (like a musical node to play) but have an audio output node where
the synthesized audio is sent.

We can route these control signals just like we do audio signals using the route_control function.

For example, let’s say we wanted to create a sweet envelope filter. Essentially what an envelope filter is a bandpass
filter that changes frequency based on how loud you are playing. So what we want to do is take the output of the
envelop tracker (which tracks how loud the notes we play are) and send this to the center frequency control parameter
of a bandbass filter.

Before we get into building this effect, here’s one important detail about how we use the route_control function:
The route_control() function takes two additional values beyond the input and output node: an offset and a
scale factor. Here’s what that means. The envelop tracker will generate a control signal between 0 and 1.0 indicating
the current volume of the notes we’re playing. However, we want to sweep our filter from say 600Hz to 1400Hz
(typical range of a wah pedal). So we want to scale our signal that goes from 0 to 1 to one that goes from 600 to 1400.
So we’ll use an offset of 600.0 and then the signal by 800.0. Here’s the equation to keep in the back of your brain:

output = (input x scale_factor) + offset_factor

So let’s create our envelop filter:

25

DreamMaker FX Documentation

fx_biquad_filter auto_wah_filter(800.0, // Initial frequency is
FILTER_WIDTH_NARROW, // Filter is narrow
BIQUAD_TYPE_BPF); // Filter type is bandpass

fx_envelope_tracker vol_tracker(10, // 10ms attack
1000); // 1000ms / 1s release

void setup() {
edal.init(); // Initialize the system

// input -> filter -> output
pedal.route_audio(pedal.instr_in, auto_wah_filter.input);
pedal.route_audio(auto_wah_filter.output, pedal.amp_out);

// Also send audio in to our envelope tracker to measure the signal
pedal.route_audio(pedal.instr_in, vol_tracker.input);

// Finally, route the control signals so the envelope tracker can control
// the filter with scale and offset values
pedal.route_control(vol_tracker.envelope, auto_wah_filter.freq, 800.0, 600.0);

pedal.run(); // Run the effect
}

9.2 Option 2: Directly controlling parameters

All effects also include dedicated routines for controlling their parameters. When these routines are called, the effects
running on the DSP are immediately updated so these happen in real time.

The loop() function is where we can make these modifications.

Now the question is what value would we use to modify these effects. We happen to have three knobs or “pots” as
they’re known (short for potentiometer which is a variable resistor). In our loop function, we can check if these knobs
have changed and updated parameters accordingly.

Let’s return to our delay effect. We want our first knob (aka pot0) to control the length of the delay and the second
knob to control the feedback. The pot values vary from 0.0 (all the way left) to 1.0 (all the way right).

// Include our library of effects routines
#include "dm_fx.h"

// Create/declare one echo effect and configure it
fx_delay my_echo_1(1000.0, // 1 second echo

0.7); // 0.7 feedback ratio

void setup() {

pedal.init(); // Initialize the system

// Connect our effect(s) to input and output jacks
pedal.route_audio(pedal.instr_in, my_echo_1.input);
pedal.route_audio(my_echo_1.output, pedal.amp_out);

pedal.run(); // Run the effect

(continues on next page)

26 Chapter 9. The basics of controlling effects

DreamMaker FX Documentation

(continued from previous page)

}

void loop() {
// put your main code here, to run repeatedly:

// Control delay length with pot0
if (pedal.pot_left.has_changed()) {
my_echo_1.set_length_ms(pedal.pot_left.val * 1000.0);

}

// Control delay feedback with pot1
if (pedal.pot_right.has_changed()) {
my_echo_1.set_length_ms(pedal.pot_right.val);

}

// sweet nothings to/from DSP
pedal.service();

}

The next section has more details on how to use the knobs and pots.

9.3 Option 3: Controlling effects with external sensors

Where things get really cool is when we begin using sensors and other sources outside the pedal to set parameters. We
could use a motion sensor to control a parameter like so

void loop() {
my_echo_1.set_length_ms(motion_sensor_position);

// sweet nothings to/from DSP
pedal.service();

}

9.3. Option 3: Controlling effects with external sensors 27

DreamMaker FX Documentation

28 Chapter 9. The basics of controlling effects

CHAPTER

TEN

BUTTONS, KNOBS AND LIGHTS

The DreamMakerFX platform has a few buttons and knobs on it. Each of these is completely programmable.

10.1 Configuring the Buttons (aka Footswitches)

The buttons can be set up to do the following:

1. Bypass the entire effect like a typical bypass switch on a pedal

2. Tap in a tempo or delay lenght

3. Behave as a momentary effect (i.e. while button is held down, do one thing and when it is release, do something
else)

4. Behave as a toggle for an effect (i.e. tap it once to turn something on, tap it again to turn it off).

10.2 1. Configuring the button as a pedal bypass switch

To configure either the left or right footswtich to become the bypass button for the effect, we use the pedal.
add_bypass_button() function while defining our pedal routes in setup(). When we call the pedal.
add_bypass_button() function, we tell it which footswtich to use as the bypass button by using either
FOOTSWITCH_LEFT or FOOTSWITCH_RIGHT as the argument.

Let’s revisit our delay function and set it up to use the left footswitch as the bypass button. If you don’t add a bypass
switch, the effect will just start running out of the gate.

void setup() {

pedal.init(); // Initialize the system

// Connect our effect(s) to input and output jacks
pedal.route_audio(pedal.instr_in, my_echo_1.input); // Instr in ->

→˓echo in
pedal.route_audio(my_echo_1.output, pedal.amp_out); // Echo out ->

→˓Amp out

// Left foot switch is bypass
pedal.add_bypass_button(FOOTSWITCH_LEFT);

(continues on next page)

29

DreamMaker FX Documentation

(continued from previous page)

pedal.run(); // Run the effect

}

10.3 2. Configuring the button to be a tap delay/tempo button

A tap function allows you to tap the switch at a certain tempo/rate. The Arduino will lock onto this tap rate and it can
be used to update things like the rate of a tremelo and the length/time of an echo effect.

To configure either of the footswitches to be a tap delay/tempo button, we use the pedal.
add_tap_interval_button() function. Just like the pedal bypass function, we can use either footswitch
as our tap delay/tempo input. We just can’t use the same footswitch that we’re using for bypass. The pedal.
add_tap_interval_button() takes two arguments. The first is the foot switch we want to use (either
FOOTSWITCH_LEFT or FOOTSWITCH_RIGHT). The second argument determines if we want the LED next to the
footswitch to flash at the same rate. Setting the second argument to true will enable the LED strobe and setting it
false will disable the LED strobe.

Let’s again revisit the delay function and add the ability to “tap in” a new delay length using the right footswitch.

void setup() {

pedal.init(); // Initialize the system

// Connect our effect(s) to input and output jacks
pedal.route_audio(pedal.instr_in, my_echo_1.input); // Instr in ->

→˓echo in
pedal.route_audio(my_echo_1.output, pedal.amp_out); // Echo out ->

→˓Amp out

// Left foot switch is bypass
pedal.add_bypass_button(FOOTSWITCH_LEFT);

// Right foot switch is our tap delay lenght input and turn on LED strobe
pedal.add_tap_interval_button(FOOTSWITCH_RIGHT, true);

pedal.run(); // Run the effect

}

In our loop() function, we call pedal.new_tap_interval() to determine if the user has tapped in a new
tempo and if so, what we want to do about it. If the user has just tapped in a new tempo/delay lenght, this function
will return true and if this user has not, it will return false.

We then have two options in terms of how we read the tap interval. Some effects take a period of time (tyically in
milliseconds) as an argument like fx_delay. Other effects that use an oscillator take a rate (typically cycles per second).

If we are reading the newly tapped interval for a function that uses time in milliseconds, we use pedal.
get_tap_interval_ms(). And if we are reading the newly tapped interval for a function that uses rate in
Hertz, we use pedal.get_tap_freq_hz().

In this case, we are using a delay function so when we detect that we have a new tap interval from the user,
we’re going to update the length of the delay effect using the tap interval in milliseconds (e.g. using pedal.
get_tap_interval_ms()).

30 Chapter 10. Buttons, Knobs and Lights

DreamMaker FX Documentation

loop() {
// If new delay time has been tapped in, use that
if (pedal.new_tap_interval()) {

// Update delay length with new tap interval
my_delay.set_length_ms(pedal.get_tap_interval_ms());

}

// Service pedal
pedal.service();

}

If we also have the option to change the tempo / time of an effect with other means (like a pot), we may want
to update the rate the light is flashing. In this case, we can use pedal.set_tap_blink_rate_ms() and
set_tap_blink_rate_ms() to set a new blink rate. First argument is which LED and the second is whether
or not to flash the LED.

So with just a few lines of code, we’ve added the ability to tap in a tempo into the pedal to control the rate of LFOs
(flangers, phasers, tremelos, vibratos, etc.) or the length of our delays.

10.4 3. Configuring the button to be a momentary switch

Sometimes it’s nice to be able to hold a footswitch down to momentarily change the sound of the effect.

Here, we can use the pedal.button_pressed() and pedal.button_released() functions. The first ar-
gument is the footswitch to watch (either FOOTSWITCH_LEFT or FOOTSWITCH_RIGHT). And the second argument
is whether to set the LED next to that footswitch while it is being held down. Similar to the others, this should be
either true or false.

loop() {

if (pedal.button_pressed(FOOTSWITCH_RIGHT, true)) {
// Adjust one or more effect parameters when button is held down

}
if (pedal.button_released(FOOTSWITCH_RIGHT, true)) {
// Adjust back one or more effect parameters when button is released

}

// Service pedal
pedal.service();

}

10.5 4. Configuring the button to be a toggle switch

This will be implemented soon!

In the mean time, you can use the pedal.button_pressed() function like so to behave like a toggle:

loop() {

static bool toggle = false;

(continues on next page)

10.4. 3. Configuring the button to be a momentary switch 31

DreamMaker FX Documentation

(continued from previous page)

static bool first_press = false;

if (pedal.button_pressed(FOOTSWITCH_RIGHT, false)) {
// Is this the first time though where button is pressed?
if (first_press) {

toggle = !toggle;
}
first_press = false;

} else {
// Reset so next time button goes low, we can respond on first press
first_press = true;

}

// Do effect based on toggle state
if (toggle) {
digitalWrite(PIN_FOOTSW_LED_RIGHT, HIGH);
// change effect parameter here when enabled

} else {
digitalWrite(PIN_FOOTSW_LED_RIGHT, LOW);
// change effect parameter here when not enabled

}

// Service pedal
pedal.service();

}

10.6 Configuring the Knobs (aka Pots)

Just like we have functions to detect when a user has pressed a button, we also have a similar function to detect when
a user has adjusted one of the knobs (also known as potentiometerss or just “pots”).

The fucnctions pedal.pot_left.has_changed(), pedal.pot_center.has_changed() and pedal.
pot_right.has_changed() will return true if the corresponding knob / pot has been adjusted.

We then have two options for reading the value of the pot: pedal.pot_0.val and pedal.pot_0.val_log. In
both cases, the range of values will be from 0.0 (full left / counter-clock-wise) to 1.0 (full right / clock-wise). However,
the pedal.pot_0.val_log function applies a logarithmic curve to the value. This can be useful when you want
a lot of precision at the low-end of the pot and less at the high end (such as setting frequencies).

The value of the pots will always be between 0.0 and 1.0 so in many cases, we’ll need to scale these based on what
aspect of the effect we are changing. For example, if want to use a pot to change the frequency range of a filter from
200.0Hz to 800.0Hz, we’ll need to add an offset of 200.0 and then multiply by 600.0 (to map 0.0->1.0 to 200.0->800.0).

Let’s add some pots to our delay effect to control time / length, feedback, and the wet/dry mix. Let’s also add the
ability to tap a delay and update the tap flash rate when the center pot has changed.

void loop() {

// If new delay time has been tapped in, use that
if (pedal.new_tap_interval()) {
my_delay.set_length_ms(pedal.get_tap_interval_ms());

}

(continues on next page)

32 Chapter 10. Buttons, Knobs and Lights

DreamMaker FX Documentation

(continued from previous page)

// Left pot changes the volume of the first loop
if (pedal.pot_left.has_changed()) {
my_delay.set_feedback(pedal.pot_left.val);

}

// Right pot changes the wet / dry mix
if (pedal.pot_right.has_changed()) {
my_delay.set_dry_mix(1.0 - pedal.pot_right.val);
my_delay.set_wet_mix(pedal.pot_right.val);

}

// Center pot can also be used to change the delay length
// from 100ms to 3000ms
if (pedal.pot_center.has_changed()) {
float new_length_ms = 100.0 + pedal.pot_center.val*2900.0;
my_delay.set_length_ms(new_length_ms);
pedal.set_tap_blink_rate_ms(new_length_ms);

}

// Service pedal
pedal.service();

}

10.7 Turning on and off the Lights (aka LEDs)

The two lights (aka LEDs) next to each footswtich can be controlled using the Arduino digitalWrite() function.
The first argument is the footswitch LED PIN_FOOTSW_LED_LEFT or PIN_FOOTSW_LED_RIGHT and the next
argument is whether is should be on / HIGH or off LOW.

To turn on the left LED, we’d do this: digitalWrite(PIN_FOOTSW_LED_LEFT, HIGH). And to turn off that
LED, we’d do this: digitalWrite(PIN_FOOTSW_LED_LEFT, LOW).

10.7. Turning on and off the Lights (aka LEDs) 33

DreamMaker FX Documentation

34 Chapter 10. Buttons, Knobs and Lights

CHAPTER

ELEVEN

USING THE API

There is an ever-growing list of effects and synth objects that can be routed and controlled in very interesting and
novel ways. These building blocks can be routed together and novel ways. And, some building blocks and control the
parameters of other building blocks.

• fx_amplitude_mod - Amplitude modulation continuously changes the volume of the audio running through
it and can be used to create tremelo effects and more advanced gating effects.

• fx_biquad_filter - A basic audio filter that filters out certain frequency ranges of audio. This can be
configured as a low-pass, high-pass, band-pass filter, etc. This block can be used for general EQ, wah pedals,
auto-wahs and envelope filters.

• fx_clipper - Provides soft and hard clipping functions that can be used to create a wide variety of distortions.
When combined with the fx_biquad_filter, a wide range of tones can be realized to recreate the sounds
of tube-amps and distortion pedals.

• fx_compressor - A compressor/limiter block that provides dynamic volume control. This can be used to
create a longer sustain effect on guitars and basses. It can also be used to keep our audio signals within range
so we don’t end up with output distortion.

• fx_delay - Used to create delay-based effects like echoes and reverbs.

• fx_envelope_tracker - Tracks the volume of the input signal and can be used to control other effects like
fx_biquad_filter for creating an auto-wah / envelope filter.

• gain - Increases or decreases the volume of the audio signal.

• fx_instr_synth - Basically a guitar/bass synth. Generates synth tones based on the note that is being
played. Follows string bends too. This will be vastly enhanced in next version of API to support polyphonic
note tracking.

• fx_looper - A looper effect can capture a sample of audio and loop it indefinitely.

• fx_mixer - Provides a variety of mixers to mix multiple effect outputs into a single signal.

• fx_oscillator - Various oscillators that can be used to generate audio or control effects.

• phase shift - A phase shifter connected to an LFO.

• fx_pitch_shift - Adjusts the pitch of the incoming signal.

• fx_ring_mod - This one is bananas. It basically modulates the incoming signal with a sine wave to create
wild harmonics.

• fx_shaper - Basically a synth that generates a wave at the same frequency, one octave below, and two octaves
below. Each of the three synthesized signals has their own output channel so they can either be mixed or sent
through different effects.

• fx_slicer - Chops up audio in time domain and sends to differnt channels. Great for making rhymthmic
effects.

35

DreamMaker FX Documentation

• fx_variable_delay - This is a short delay line that is varied in real time. This is core building block for
flanger, chorus, and vibrato effects.

There are several other modules in development including reverbs, all-pass filter, automatic loop detector, etc.

11.1 Special parameters and constants

Some objects take inputs that aren’t numbers but rather a constant that is chosen from a list. Below is a list of the
constants that may be used when initializing an effect.

BIQUAD_FILTER_TYPE: Types of filters that can be implemented with fx_biquad_fiter

• BIQUAD_TYPE_LPF - low-pass filter (cuts out high frequencies)

• BIQUAD_TYPE_HPF - high-pass filter (cuts out low frequencies)

• BIQUAD_TYPE_BPF - band-pass filter (only lets a limited range of frequencies through)

• BIQUAD_TYPE_NOTCH - opposite of band-pass

• BIQUAD_TYPE_PEAKING - don’t worry about it

• BIQUAD_TYPE_L_SHELF - similar to low pass

• BIQUAD_TYPE_H_SHELF - similar to high pass

BIQUAD_FILTER_WIDTH: How “wide” a filter is for use with fx_biquad_fiter

• FILTER_WIDTH_VERY_NARROW - very narrow indeed

• FILTER_WIDTH_NARROW - like a wah filter

• FILTER_WIDTH_MEDIUM - a bit narrow

• FILTER_WIDTH_WIDE - wide with flat response (q=0.7071)

• FILTER_WIDTH_VERY_WIDE - very wide

ENV_TRACKER_TYPE: Type of envelop tracking

• ENV_TRACK_PEAKS - haha, there is only one option - rides the peaks like riding the lion

EFFECT_TRANSITION_SPEED: How quickly to transition parameters when a parameter is modified (used in sev-
eral effects)

• TRANS_VERY_FAST - rabbit

• TRANS_FAST

• TRANS_MED

• TRANS_SLOW

• TRANS_VERY_SLOW - turtle

OSC_TYPES: Types of oscillators (used in several effects)

• OSC_SINE - sine wave

• OSC_TRI - triangle wave

• OSC_SQUARE - square wave

• OSC_PULSE - pulse wave

• OSC_RAMP - ramp wave

36 Chapter 11. Using the API

DreamMaker FX Documentation

POLY_CLIP_FUNC: Various clipping functions for use with fx_clipper

• POLY_SMOOTHSTEP - try it and see if you like it

• POLY_SMOOTHERSTEP - try it and see if you like it

• POLY_SIMPLE_1 - try it and see if you like it

• POLY_SIMPLE_2 - try it and see if you like it

11.1. Special parameters and constants 37

DreamMaker FX Documentation

38 Chapter 11. Using the API

CHAPTER

TWELVE

DEBUGGING SKETCHES

There are a few different resources that are available for debugging a sketch that isn’t working as intended.

When initializing a sketch, you can enable debug by calling pedal.init(true) instead of pedal.init().
This will put the pedal in “debug mode” which means it will send information to the Serial Monitor (Tools->Serial
Monitor). Open the Serial Monitor before downloading your sketch. Once the sketch is running, you’ll see status info
and any errors that were encountered while processing the routing information.

// Include our library of effects routines
#include <dreammakerfx.h>

// Create/declare one echo effect and configure it
fx_delay my_echo_1(1000.0, // 1 second echo

0.7); // 0.7 feedback ratio

void setup() {

pedal.init(MSG_INFO); // Initialize the system and display additional information

// Connect our effect(s) to input and output jacks
pedal.route_audio(pedal.instr_in, my_echo_1.input);
pedal.route_audio(my_echo_1.output, pedal.amp_out);

pedal.run(); // Run the effect

}

You can also generate a report of the final routing and parameters by adding a few additional commands
before calling pedal.run(). print_instance_stack() will show you all of the instances in the
sketch. print_routing_table() will show you how the audio and control are wired up. And
print_param_tables() will show you the parameters for each instance.

// Include our library of effects routines
#include <dreammakerfx.h>

// Create/declare one echo effect and configure it
fx_delay my_echo_1(1000.0, // 1 second echo

0.7); // 0.7 feedback ratio

void setup() {

pedal.init(MSG_INFO); // Initialize the system

(continues on next page)

39

DreamMaker FX Documentation

(continued from previous page)

// Connect our effect(s) to input and output jacks
pedal.route_audio(pedal.instr_in, my_echo_1.input);
pedal.route_audio(my_echo_1.output, pedal.amp_out)

// Print debug info to Serial Monitor
pedal.print_instance_stack();
pedal.print_routing_table();
pedal.print_param_tables();

pedal.run(); // Run the effect

}

40 Chapter 12. Debugging Sketches

CHAPTER

THIRTEEN

GENERAL TROUBLESHOOTING

13.1 Issue: DM_FX volume not showing up when plugging pedal into
USB port

There are a few common reasons why a pedal doesn’t show up when plugging it into USB

• The pedal also needs to be plugged into the wall as it is not USB powered. Go plug it in.

• The cable is a USB charging cable and doesn’t have any data wires. Find a different cable.

• The pedal needs to be placed in bootloader mode. Place the pedal in bootloader mode per the description below.

• If you’re running Linux or Windows 7, this may be an Arduino driver issue. Make sure you’re running the latest
version of the Arduino IDE.

13.2 Issue: SAM-BA operation failed error while downloading an Ar-
duino sketch

When clicking the download button, sometimes the download process will stop.

When this happens, wait for the Arduino IDE to display the message "SAM-BA operation failed" which
usually happens a few seconds after the download process stops. Then, put the pedal into bootloader mode as shown
below. You should see the DM_FX drive/volume appear on your computer after you do this. You should now be able
to download without issue.

13.3 Issue: After downloading my sketch, one footswitch LED is on
and the other is periodically strobing

If the pedal encounters an error while downloading your sketch, it will turn on the left LED and periodically strobe the
right LED. The number of times the right LED strobes in quick succession indicates the issue the pedal encountered.

• 2 flashes - the pedal encountered an illegal routing combination (e.g. two output nodes connected to an input
node). Try using debug mode as described in the Debugging Sketches article.

41

DreamMaker FX Documentation

• 3 flashes - the firmware running on the DSP does not match the Arduino package version. Make sure your
firmware is up to date.

• 5 flashes - the DSP is not running or responding. Run for the hills.

13.4 Issue: I am getting a “bad CPU type in executable” error when
compiling my sketch

Upgrade your Arduino tools to version 1.8.10 or later. This is a known issue running Arduino on OS X Catalina.

13.5 Issue: When building my sketch, error “dreammakerfx.h: No
such file or directory”

If you encounter the following error while compiling your sketch, it likely means you don’t have the right board
selected in the Arduino tools.

exit status 1
Dreammakerfx.h: No such file or directory

First, make sure you have the DreamMakerFX package installed as described in the Installing section. Then, make sure
you have the DreamMakerFX hardware selected. Go to Tools->Boards and you’ll see a number of different Arduino
boards listed in the menu. At the end of the list in the menu, you should see DreamMaker FX (SAMD51/ARM Cortex
M4 Core). Select this and try compiling again.

13.6 Placing the pedal in bootloader mode

To place the pedal into bootloader mode, follow this process:

Placing DreamMaker FX into bootloader mode

In rare circumstances, the pedal may not respond to the bootloader sequence. In this case, remove the back cover of
the pedal and press the reset button on the circuit board twice in quick succession while the pedal is powered up. A
small LED near the USB connector should flash a few times and then slowly strobe in and out (like it is breathing).
This will also put the pedal into bootloader mode. You should see the DM_FX drive/volume appear on your computer
after you do this. You should now be able to download without issue.

42 Chapter 13. General troubleshooting

CHAPTER

FOURTEEN

CLASS FX_PEDAL

• Defined in file_src_dreammakerfx.h

14.1 Class Documentation

class fx_pedal
The pedal.

The pedal object is the root of all functionality on DreamMakerFx. We reference this object when wiring
effects together and controlling the various knobs, buttons, lights, etc.

An effect will always have a few common elements:

#include <dreammakerfx.h>

void setup() {

// Initialize the pedal hardware
pedal.init();

// Route audio through the pedal to any effects modules
pedal.route_audio(pedal.instr_in, pedal.amp_out);

// Run the effect on the DSP
pedal.run();

}

void loop() {

// Exchange information wiht the DSP
pedal.service();

}

There are several other functions that control the buttons, lights/LEDs, knobs/pots and toggle switches.

43

DreamMaker FX Documentation

Public Functions

fx_pedal()

void init(void)
Initializes the pedal object with default debug level (just warnings and errors)

void init(DEBUG_MSG_LEVEL debug_level)
Initializes the pedal object with user defined debug level.

Parameters

• [in] debug_level: The debug level to display (MSG_DEBUG, MSG_INFO,
MSG_WARN, MSG_ERROR)

void init(DEBUG_MSG_LEVEL debug_level, bool dsp_no_reset)
Initializes the pedal object with used defined debug level, bypasses DSP reset.

Parameters

• [in] debug_level: The debug level to display (MSG_DEBUG, MSG_INFO,
MSG_WARN, MSG_ERROR)

• [in] dsp_no_reset: The dsp no reset (set to true to bypass reset)

void init(bool debug_enable)

void init(bool debug_enable, bool dsp_telem)

bool run(void)
Runs the current canvas (i.e. compiles and downloads to the DSP)

Return True if successful, false if not

void service(void)
Pedal service function that should be called in the Arduino loop() function.

bool route_audio(fx_audio_node *out, fx_audio_node *in)
Routes a source node (output) to a destination mode (input)

Return True is successful, false if not

Parameters

• src: The source / output

• dest: The destination / input

bool route_control(fx_control_node *src, fx_control_node *dest)
Route a control source node (output) to a destination mode (input)

Return True is successful, false if not

Parameters

• src: The source node (should be an output)

• dest: The destination node (should be an input)

44 Chapter 14. Class fx_pedal

DreamMaker FX Documentation

bool route_control(fx_control_node *src, fx_control_node *dest, float scale, float offset)
Route a control source node (output) to a destination mode (input)

Return True is successful, false if not

Parameters

• src: The source node (should be an output)

• dest: The destination node (should be an input)

• [in] scale: The scale to apply to the control value

• [in] offset: The offset to apply to the control value

void add_bypass_button(FOOTSWITCH footswitch)
Set one of the footswitches to be a bypass button.

This function will also set the corresponding LED to turn on and off when bypass is disabled / enabled.

Parameters

• [in] footswitch: The footswitch (FOOTSWITCH_RIGHT, FOOTSWITCH_LEFT)

void add_tap_interval_button(FOOTSWITCH footswitch, bool enable_led_flash)
Set one of the footswitches to be a tap tempo / length button.

Parameters

• [in] footswitch: The footswitch (FOOTSWITCH_RIGHT, FOOTSWITCH_LEFT,
FOOTSWITCH_BOTH)

• [in] enable_led_flash: Set the corresponding LED to flash at tempo rate

void bypass_fx(void)

void enable_fx(void)

bool new_tap_interval(void)
Returns true when a new tap interval has been tapped in by the user.

Return { description_of_the_return_value }

float get_tap_interval_ms(void)
Returns the current tap interval in milliseconds.

Return The tap interval in milliseconds.

float get_tap_freq_hz(void)
Returns the current tap interval in Hertz (cycles / second)

Return The tap frequency in Hertz

void set_tap_blink_rate_hz(float rate_hz)
Sets the LED blink rate for tap interval.

Use this if there is a pot that can also change the tempo / rate / duration to override what has been previously
“tapped” in.

14.1. Class Documentation 45

DreamMaker FX Documentation

Parameters

• [in] rate_hz: The new blink rate in Hertz

void set_tap_blink_rate_hz(float rate_hz, FOOTSWITCH led)
Sets the LED blink rate for tap interval with LED control.

Use this if there is a pot that can also change the tempo / rate / duration to override what has been previously
“tapped” in.

Parameters

• [in] rate_hz: The new blink rate in Hertz

• [in] led: Which LED to flash (FOOTSWITCH_LEFT, FOOTSWITCH_RIGHT)

void set_tap_blink_rate_ms(float ms)
Sets the LED blink rate in milliseconds.

Use this if there is a pot that can also change the tempo / rate / duration to override what has been previously
“tapped” in.

Parameters

• [in] ms: The blink rate in milliseconds

void set_tap_blink_rate_ms(float ms, FOOTSWITCH led)
Sets the LED blink rate for tap interval with LED control.

Use this if there is a pot that can also change the tempo / rate / duration to override what has been previously
“tapped” in.

Parameters

• [in] ms: The new blink period in milliseconds

• [in] led: Which LED to flash (FOOTSWITCH_LEFT, FOOTSWITCH_RIGHT)

bool button_pressed(FOOTSWITCH footswitch, bool enable_led)
Checks if a button was just pressed and optionally turns on an LED when it is.

This function is used to create events when a button is held down and released to momentarily enable /
disable functionality.

Return true if button is pressed, false if not

Parameters

• [in] footswitch: The footswitch (FOOTSWITCH_LEFT, FOOTSWITCH_RIGHT,
(FOOTSWITCH_LEFT, FOOTSWITCH_BOTH)

• [in] enable_led: If true, lights LED while button pressed

bool button_released(FOOTSWITCH footswitch, bool enable_led)
Checks if a button was just released and optionally turns off an LED when it was.

This function is used to create events when a button is held down and released to momentarily enable /
disable functionality.

Return { description_of_the_return_value }

46 Chapter 14. Class fx_pedal

DreamMaker FX Documentation

Parameters

• [in] footswitch: The footswitch (FOOTSWITCH_LEFT, FOOTSWITCH_RIGHT,
(FOOTSWITCH_LEFT, FOOTSWITCH_BOTH)

• [in] enable_led: If true, turns off the LED when button is released

void register_tap(void)

void button_press_check(void)

void service_button_events(void)

void print_instance_stack(void)
Utility function to print the instance stack to the console.

void print_routing_table(void)
Utility function to print the routing table to the console.

void print_param_tables(void)
Utility function to print the parameter tables.

void print_processor_load(int seconds)
Prints the current processor loading (percentage) to Serial console.

Parameters

• [in] seconds: How many seconds to wait before displaying the loading again

void spi_transmit_param(EFFECT_TYPE instance_type, uint32_t instance_id, PARAM_TYPES
param_type, uint8_t param_id, void *value)

void parameter_service(void)

Public Members

bool bypass_control_enabled

bool bypassed

FOOTSWITCH bypass_footswitch

bool tap_control_enabled

bool tap_blink_only_enabled

FOOTSWITCH tap_footswitch

fx_pot pot_right

fx_pot pot_center

fx_pot pot_left

fx_led led_left

fx_led led_right

fx_pot pot_top_left

fx_pot pot_top_right

fx_pot pot_bot_left

14.1. Class Documentation 47

DreamMaker FX Documentation

fx_pot pot_bot_center

fx_pot pot_bot_right

fx_pot exp_pedal

fx_switch toggle_left

fx_switch toggle_right

fx_led led_center

fx_audio_node *instr_in
Alias for left instrument in (mono)

fx_audio_node *instr_in_l
Left instrument in node

fx_audio_node *instr_in_r
Right instrument in node

fx_audio_node *amp_out
Alias for left instrument out (mono)

fx_audio_node *amp_out_l
Left amp out node

fx_audio_node *amp_out_r
Right amp out node

fx_audio_node *mic_in_l

fx_audio_node *mic_in_r

fx_control_node *note_frequency
Pedal variable of current note frequency

fx_control_node *note_duration
Pedal variable of current note duration in milliseconds

fx_control_node *new_note
Pedal variable of when a new note is played

Protected Attributes

fx_audio_node *audio_node_stack[4]

fx_control_node *control_node_stack[4]

Friends

friend fx_pedal::fx_effect

48 Chapter 14. Class fx_pedal

CHAPTER

FIFTEEN

CLASS FX_LED

• Defined in file_src_dreammakerfx.h

15.1 Class Documentation

class fx_led
These functions are used to control the LEDs on the pedal.

The LEDs are part of the pedal object. The LEDs available on the first version of hardware are pedal.
led_left and pedal.led_right. On the second generation of hardware, there is also a pedal.
led_center. Add the routines described below to these like so:

To turn on the left LED:

pedal.led_left.turn_on(); // Turn on left LED

To turn off the right LED;

pedal.led_right.turn_off(); // Turn off right LED

To set the center LED to a purplish color:

pedal.led_center.turn_on(40, 0, 50); // Red = 40, Blue = 50

Fade the right LED from red to blue over 1 second

pedal.led_right.set_rgb(RED);
pedal.led_right.fade_to_rgb(BLUE, 1000.0);

Public Functions

void turn_on()
Turns on this LED. When using an RGB LED, this turns it on to red.

pedal.led_right.turn_on(); // turns on the right LED

void turn_on(uint8_t red, uint8_t green, uint8_t blue)
Turns on this LED to a specific RGB color.

pedal.led_left.turn_on(100, 0, 75); // turn left LED purple

49

DreamMaker FX Documentation

Parameters

• [in] red: The red component (0-255)

• [in] green: The green component (0-255)

• [in] blue: The blue component (0-255)

void turn_on(LED_COLOR rgb)
Turns on this LED to a specific RGB color. If the LED is not an RGB LED, it will just turn on the LED
anyway.

pedal.led_left.turn_on(GREEN);

Parameters

• [in] rgb: The color from LED_COLOR type

void turn_off()
Turns off this LED.

pedal.led_center.turn_off(); // turn off center LED

void set_rgb(uint8_t red, uint8_t green, uint8_t blue)
Sets the RGB color value for this LED.

pedal.led_center.set_rgb(40, 0, 50); // Set center LED to purplish color

Parameters

• [in] red: The new red component (0-255)

• [in] green: The new green component (0-255)

• [in] blue: The new blue component (0-255)

void set_rgb(LED_COLOR rgb)
Sets the RGB color value for this LED.

pedal.led_right.set_rgb(RED); // set right LED to red color

Parameters

• [in] rgb: The color from LED_COLOR type

void fade_to_rgb(uint8_t red, uint8_t green, uint8_t blue, uint32_t milliseconds)
Fade this LED to a new RGB value. The fade happens in the background.

Fade the right LED from red to blue over 1 second.

pedal.led_right.set_rgb(RED);
pedal.led_right.fade_to_rgb(0, 0, 100, 1000.0);

The fade happens in the background so the code execution will not wait until the fade completes.

Parameters

• [in] red: The red component (0-255)

50 Chapter 15. Class fx_led

DreamMaker FX Documentation

• [in] green: The green component (0-255)

• [in] blue: The blue component (0-255)

• [in] milliseconds: The milliseconds component (0-255)

void fade_to_rgb(LED_COLOR rgb, uint32_t milliseconds)
Fade this LED to a new RGB value.

Fade the right LED from red to blue over 1 second

pedal.led_right.set_rgb(RED);
pedal.led_right.fade_to_rgb(BLUE, 1000.0);

The fade happens in the background so the code execution will not wait until the fade completes.

Parameters

• [in] rgb: The color from LED_COLOR type

• [in] milliseconds: The milliseconds to perform fade over

void service()

15.1. Class Documentation 51

DreamMaker FX Documentation

52 Chapter 15. Class fx_led

CHAPTER

SIXTEEN

CLASS FX_POT

• Defined in file_src_dreammakerfx.h

16.1 Class Documentation

class fx_pot
These functions are used to read the pots (aka the knobs) of the pedal.

Each knob has a value ranging from 0.0 (full counter-clockwise) to 1.0 (full clock-wise).

The first generation hardware has three pots (pedal.pot_left, pedal.pot_center, and pedal.
pot_right).

The second generation hardware has five pots (pedal.pot_top_left, ‘pedal.pot_top_right’,
‘pedal.pot_bot_left<tt>,pedal.pot_bot_center<tt>andpedal.pot_bot_right`). To preserve backwards com-
patibility with sketches developed on the first generation hardware, the pedal.pot_left will map to
‘pedal.pot_bot_left` (and same for center and right pots).

Use the .has_changed() function to determine when a pot has been adjusted by the user.

void loop() {

if (pedal.pot_left.has_changed()) {
delay_effect.set_feedback(pedal.pot_left.val); // Set feedback of delay

→˓using left pot
}

// Other code in loop()...

Public Functions

bool has_changed(void)
Returns true if this pot has been changed by the user

if (pedal.pot_left.has_changed()) {
delay_effect.set_feedback(pedal.pot_left.val); // Set feedback of delay

→˓using left pot
}

.

Return True if changed, False otherwise.

53

DreamMaker FX Documentation

void read_pot()

fx_pot(int pin)

Public Members

float val
Current value of pot (0.0 to 1.0)

float val_inv
Current value of pot (1.0 to 0.0)

float val_log
Current value of pot with log curve applied (still 0.0 to 1.0)

float val_log_inv
Current value of pot with inverse log curve applied (still 0.0 to 1.0)

54 Chapter 16. Class fx_pot

CHAPTER

SEVENTEEN

CLASS FX_SWITCH

• Defined in file_src_dreammakerfx.h

17.1 Class Documentation

class fx_switch
These functions are used to control the toggle switches on the pedal.

The switches, which are available on the second generation hardware, are part of the pedal object. The
available switches are pedal.toggle_left and pedal.toggle_right.

void loop() {

// When the user changes the left toggle switch, change the color of the LED
if (pedal.toggle_left.has_changed()) {

if (pedal.toggle_left.position == SWITCH_POS_UP) {
pedal.led_left.turn_on(RED);

}

else if (pedal.toggle_left.position == SWITCH_POS_MIDDLE) {
pedal.led_left.turn_on(GREEN);

}

else if (pedal.toggle_left.position == SWITCH_POS_DOWN) {
pedal.led_left.turn_on(BLUE);

}
}

// Other code in loop()...

}

55

DreamMaker FX Documentation

Public Members

SWITCH_POS position
Current switch position (SWITCH_POS_UP, SWITCH_POS_MIDDLE, SWITCH_POS_DOWN)

56 Chapter 17. Class fx_switch

CHAPTER

EIGHTEEN

CLASS FX_ADSR_ENVELOPE

• Defined in file_src_effects_dm_fx_adsr_envelope.h

18.1 Inheritance Relationships

18.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

18.2 Class Documentation

class fx_adsr_envelope : public fx_effect
Effect: Envelope generator.

An envelope generator creates a volume envelope that can applied to either the audio from the instrument or an
oscillator. The volume envelope has four components: (A)ttack, (D)ecay, (S)ustain, (R)elease. These parameters
can be adjusted to make short tight notes or long swells.

Here’s more information about how these work: https://en.wikipedia.org/wiki/Envelope_(music)

The ADSR envelope is triggered / kicked-off with an event. This is typically a new note event from the pedal.

#include <dreammakerfx.h>

// Add your fx module declarations here
fx_adsr_envelope env(250.0, // Attack is 250ms

10.0, // Decay is 10ms
10.0, // Sustain is 10ms
500.0, // Release is 500ms
1.0, // Sustain ratio
1.0, // Full volume
true); // Enable look-ahead buffer to suppress initial

→˓plucks

void setup() {
// put your setup code here, to run once:

// Initialize the pedal!
pedal.init(MSG_INFO, true);

// Route audio through effects from pedal.instr_in to pedal.amp_out

(continues on next page)

57

https://en.wikipedia.org/wiki/Envelope_(music)

DreamMaker FX Documentation

(continued from previous page)

pedal.route_audio(pedal.instr_in, env.input);
pedal.route_audio(env.output, pedal.amp_out);

// IMPORTANT! route the new note event from the pedal to the start node of the
→˓ADSR
pedal.route_control(pedal.new_note, env.start);

// left footswitch is bypass
pedal.add_bypass_button(FOOTSWITCH_LEFT);

// Run this effect
pedal.run();

}

Public Functions

fx_adsr_envelope(float attack_ms, float decay_ms, float sustain_ms, float release_ms, float sus-
tain_ratio, float gain_out, bool look_ahead)

constructor/initializer for the ADSR envelope

// Add your fx module declarations here
fx_adsr_envelope env(250.0, // Attack is 250ms

10.0, // Decay is 10ms
10.0, // Sustain is 10ms
500.0, // Release is 500ms
1.0, // Sustain ratio
1.0, // Full volume
true); // Enable look-ahead buffer

Parameters

• [in] attack_ms: The attack in milliseconds

• [in] decay_ms: The decay in milliseconds

• [in] sustain_ms: The sustain in milliseconds

• [in] release_ms: The release in milliseconds

• [in] sustain_ratio: Ratio of sustain volume to peak volume between attack / decay

• [in] gain_out: The gain out (linear: 0.0 to 1.0)

• [in] look_ahead: When set to true, a small look-ahead buffer is used such that the initial
impulse of a plucked note is suppressed

void enable()
Enable the this_effect (it is enabled by default)

void bypass()
Bypass the this_effect (will just pass clean audio through)

void set_attack_ms(float attack)
Sets the attack time in milliseconds.

Parameters

58 Chapter 18. Class fx_adsr_envelope

DreamMaker FX Documentation

• [in] attack: The attack time in milliseconds

void set_decay_ms(float decay)
Sets the decay time in milliseconds.

Parameters

• [in] decay: The decay time in milliseconds

void set_sustain_ms(float sustain)
Sets the release time in milliseconds.

Parameters

• [in] sustain: The sustain time in milliseconds

void set_release_ms(float release)

void set_output_gain(float gain)
Sets the output gain (linear)

Parameters

• [in] gain: The gain value (linear)

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *attack_ms
Control routing node [input]: envelope attack in milliseconds

fx_control_node *decay_ms
Control routing node [input]: envelope decay in milliseconds

fx_control_node *sustain_ms
Control routing node [input]: envelope sustain in milliseconds

fx_control_node *release_ms
Control routing node [input]: envelope release in milliseconds

fx_control_node *peak_ratio
Control routing node [input]: relative volume after attack (0.0 to 1.0) - will be scaled by output volume

fx_control_node *sustain_ratio
Control routing node [input]: relative volume during sustain (0.0 to 1.0) - will be scaled by output volume

fx_control_node *gain_out
Control routing node [input]: output pain

fx_control_node *start
Control routing node [input]: start - start a new ADSR envelope run

fx_control_node *value
Control routing node [output]: value of the envelope

18.2. Class Documentation 59

DreamMaker FX Documentation

60 Chapter 18. Class fx_adsr_envelope

CHAPTER

NINETEEN

CLASS FX_AMPLITUDE_MOD

• Defined in file_src_effects_dm_fx_amplitude_modulator.h

19.1 Inheritance Relationships

19.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

19.2 Class Documentation

class fx_amplitude_mod : public fx_effect
Effect: Amplitude modulator for creating tremelo-like effects.

Amplitude modulators are the basic building blocks of tremelos and rhythmic effects. They essentially use an
oscillator / waveform or an external control signal to vary the amplitude / volume of a signal.

#include <dreammakerfx.h>

fx_amplitude_mod mod1(1.0, // Rate (Hz) is once per second
0.8, // Depth (0.0->1.0)
0, // Initial phase (degrees)
OSC_SINE,// Oscillator type is a sine wave
false); // Don't use external LFO

void setup() {

pedal.init(); // Initialize pedal

// Route audio through effects
pedal.route_audio(pedal.instr_in, mod1.input);
pedal.route_audio(mod1.output, pedal.amp_out);

pedal.add_bypass_button(FOOTSWITCH_LEFT); // Use left footswitch/LED to bypass
→˓effect

pedal.run(); // Run effects
}

void loop() {

(continues on next page)

61

DreamMaker FX Documentation

(continued from previous page)

// Pot 0 changes the rate of the tremelo from 0 to 4Hz
if (pedal.pot_0.has_changed()) {

mod1.set_rate_hz(pedal.pot_0.val*4.0);
}

// Pot 1 changes the depth from 0.0 to 1.0
if (pedal.pot_1.has_changed()) {

mod1.set_depth(pedal.pot_1);
}

pedal.service(); // Run pedal service to take care of stuff
}

There are lots of cool things you can try with amplitude modulators: use tap function to set rate, use a instrument
input through a pitch shifter as the external modulator, use high modulation frequency like 440.0Hz, try a few
in parallel running through filters with different initial phase values (to create harmonic tremelos).

Public Functions

fx_amplitude_mod(float rate_hz, float depth)
Basic constructor/initializer for amplitude modulator.

fx_amplitude_mod mod1(1.0, // Rate (Hz) is once per second
0.8); // Depth (0.0->1.0)

Parameters

• [in] modulation_rate: When using an internal oscillator, the “modulation” rate is oscil-
lation (cycles per second). When in doubt, start with 1.0 (one cycle per second)

• [in] modulation_depth: How much the volume is “modulated”. A value of 0.0 is none at
all and a value of 1.0 means full volume to zero volume.

fx_amplitude_mod(float rate_hz, float depth, float initial_phase_deg, OSC_TYPES modula-
tion_type, bool use_ext_modulator)

Advanced constructor for the amplitude modulator.

fx_amplitude_mod mod1(1.0, // Rate (Hz) is once per second
0.8, // Depth (0.0->1.0)
0, // Initial phase (degrees)
OSC_SINE,// Oscillator type is a sine wave
false); // Don't use external LFO

Parameters

• [in] rate_hz: When using an internal oscillator, the “modulation” rate is oscillation (cycles
per second). When in doubt, start with 1.0 (one cycle per second)

• [in] depth: How much the volume is “modulated”. A value of 0.0 is none at all and a value
of 1.0 means full volume to zero volume.

• [in] initial_phase_deg: The initial phase of the oscillator in degrees. When in doubt,
use 0.0. This is useful when you want to have multiple oscillators running at different phases such
as in harmonic tremelo where one may be at 0.0 and the other at 180.0.

62 Chapter 19. Class fx_amplitude_mod

DreamMaker FX Documentation

• [in] modulation_type: See OSC_TYPES for available waveforms (sine, square, triangle,
random, pulse, etc.) as the modulation source.

• [in] use_ext_modulator: Rather than using an internal modulator, you can also use an
external audio source. Route audio to the .ext_mod_in audio to use it as the external modulator.

void enable()
Enable the amplitude modululator (it is enabled by default)

void bypass()
Bypass the amplitude modululator (will just pass clean audio through)

void set_depth(float depth)
Sets the depth of the amplitude modululator.

mod1.set_depth(0.5); // Sets the depth of the modulator to a fixed value

Parameters

• [in] depth: The depth fom 0.0 -> 1.0. 0.0 is no modulation at all, 1.0 is full modulation.

void set_rate_hz(float rate_hz)
Sets the rate of the modulator in Hertz (cycles per second)

Parameters

• [in] rate_hz: The rate hz

void set_lfo_type(OSC_TYPES new_type)
Sets the the type of oscillator used as the LFO.

Parameters

• [in] new_type: The new type of LFO (OSC_TYPES)

void print_params(void)
Print the parameters for this effect.

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_audio_node *ext_mod_in
Audio routing node: external modulator audio input

fx_control_node *depth
Control routing node: amplifude modulator depth (should be between 0.0 and 1.0)

fx_control_node *rate_hz
Control routing node: amplitide modulator rate (Hz) (i.e. 1.0 = once per second)

19.2. Class Documentation 63

DreamMaker FX Documentation

64 Chapter 19. Class fx_amplitude_mod

CHAPTER

TWENTY

CLASS FX_ARPEGGIATOR

• Defined in file_src_effects_dm_fx_arpeggiator.h

20.1 Inheritance Relationships

20.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

20.2 Class Documentation

class fx_arpeggiator : public fx_effect
Effect: Arpeggiator which can sequence rhythmic patterns of pitch, gain and parameters.

An arpeggiator is a control source that can play sequences of notes and other control signals.

The arpeggiator relies on a structure that you define at the top of your Arduino sketch that contains the sequence
that the arpeggiator will run through. This sequence can have up to 16 steps. In this example, our sequence is
called steps2 but you can name it whatever you’d like.

You can also add .param_1 and .param_2 to this struct for any additional control values. These control
values can be wired into any type of control note (filters, distortions, etc.)

ARP_STEP steps2[] = {
{ .freq = SEMI_TONE_2, .vol = 0.3, .dur = 125.0 },
{ .freq = SEMI_TONE_0, .vol = 0.0, .dur = 375.0 },
{ .freq = SEMI_TONE_5, .vol = 0.3, .dur = 375.0 },
{ .freq = SEMI_TONE_7, .vol = 0.9, .dur = 125.0 },
};

65

DreamMaker FX Documentation

Public Functions

fx_arpeggiator(int total_steps, ARP_STEP *steps)
Simple constructor for arpeggiator.

See above for a description of how to define an arpeggiator sequence.

// Define arp sequence with 4 steps with a total duration of 1 second
ARP_STEP steps2[] = {

{ .freq = SEMI_TONE_2, .vol = 0.3, .dur = 125.0 },
{ .freq = SEMI_TONE_0, .vol = 0.0, .dur = 375.0 },
{ .freq = SEMI_TONE_5, .vol = 0.3, .dur = 375.0 },
{ .freq = SEMI_TONE_7, .vol = 0.9, .dur = 125.0 },

};

// Define our arpeggiator
fx_arpeggiator arp2(4, // Total number of steps

&steps2[0]); // Reference to our sequence

Parameters

• [in] total_steps: The total arpeggiator steps

• steps: A pointer to an array of ARP_STEP containing the steps

void set_time_scale(float new_time_scale)
Sets the time scale ratio of the arpeggiator.

Parameters

• [in] new_time_scale: The new time scale ratio (1.0 is current time scale, > 1.0 is faster, <
1.0 is slower)

void set_duration_ms(float new_duration)
Sets the duration of the arpeggiator in milliseconds.

Parameters

• [in] new_duration: The new duration in milliseconds

void print_params(void)

Public Members

fx_control_node *time_scale
Control routing node: Time scale of arpeggiator (aka playback rate). A value of 1.0 runs arpeggiator at
default speed. Lower is slower, higher is faster.

fx_control_node *period_ms
Control routing node: Target duration of the arpeggiator. Arpeggiator will be scaled so the whole sequence
fits within this time.

fx_control_node *freq
Control routing node: Frequency value for each stage of the arpeggiator

fx_control_node *vol
Control routing node: Volume value for each stage of the arpeggiator

66 Chapter 20. Class fx_arpeggiator

DreamMaker FX Documentation

fx_control_node *param_1
Control routing node: Auxiliary parameter #1 for each stage of the arpeggiator

fx_control_node *param_2
Control routing node: Auxiliary parameter #2 for each stage of the arpeggiator

fx_control_node *start
Control routing node: Restarts the arpeggiator - wire to new note event to start arp sequence with each
note

20.2. Class Documentation 67

DreamMaker FX Documentation

68 Chapter 20. Class fx_arpeggiator

CHAPTER

TWENTYONE

CLASS FX_BIQUAD_FILTER

• Defined in file_src_effects_dm_fx_biquad_filter.h

21.1 Inheritance Relationships

21.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

21.2 Class Documentation

class fx_biquad_filter : public fx_effect
Effect: Biquad filter for implementing various types of filters (low pass, high pass, band pass, etc.)

The biquad filter can be used to create static filters such as equalizers and dynamic filters such as auto-wahs and
other interesting swept filtering effects.

Filters are a basic building block of so many audio effects. Filters allow certain frequencies to pass through and
decrease the volume at other frequencies.

A wah pedal is a band pass filter that is “swept” across a range of frequencies based on foot position.

In this example, we’ll create an auto-wah filter where we have an envelope tracker which tracks the volume we’re
playing at and uses this to move the filter frequency. This example uses both route_audio AND route_control.
This is where the magic lies.

#include <dreammakerfx.h>
fx_envelope_tracker envy_tracky(10, // 10 ms attack

100, // 100 ms release
false); // not triggered

fx_biquad_filter wah_filter(300.0, // 300 Hz starting frequency
FILTER_WIDTH_NARROW, // Width of the filter is

→˓narrow
BIQUAD_TYPE_BPF); // Type is bandpass

void setup() {
pedal.init(); // Initialize pedal

// Route audio through effects
pedal.route_audio(pedal.instr_in, wah_filter.input);

(continues on next page)

69

DreamMaker FX Documentation

(continued from previous page)

pedal.route_audio(wah_filter.output, pedal.amp_out);

// Route audio to envelope tracker
pedal.route_audio(pedal.instr_in, envy_tracky.input);

// Route control from envelop tracker to filter frequency
pedal.route_control(envy_tracky.envelope, wah_filter.freq, 1000.0, 300.0); //

→˓range 0->1 to 300->300+1000

pedal.add_bypass_button(FOOTSWITCH_LEFT); // Use left footswitch/LED to bypass
→˓effect

pedal.run(); // Run effects
}

void loop() {
pedal.service(); // Run pedal service to take care of stuff

}

There are lots of cool things you can try with filters: hook up a filter to the envelope tracker to create an auto-
wah, run a clipper through a filter to get various tube sounds, hook up an oscillator to the filter frequency to
create a rhythmic filter sweep, run filters through amplitude modulators to create harmonic modulators.

Public Functions

fx_biquad_filter(float filt_freq, float filt_resonance, BIQUAD_FILTER_TYPE filt_type)
Basic constructor for biquad filter.

// 200Hz 2nd-order (default) low-pass filter to just let bass frequencies
→˓through
fx_biquad_filter simple_filt(200.0,

1.0,
BIQUAD_TYPE_LPF);

Parameters

• [in] filt_freq: This is the cutoff frequency or center frequency of the filter in Hertz.

• [in] filt_resonance: This is how quickly the filter “rolls off” – is it a gentle, wide filter or
a tight narrow filter? A value of 1.0 is no resonance; > 1.0 is more resonant, < 1.0 is less resonant.

• [in] filt_type: Filters come in lots of colors. Low-pass filters (LPF) cut higher frequen-
cies. High-pass filters (HPF) cut lower frequencies. Band-pass filters (BPF) cut frequencies on
both sides of the filter frequency. And notch filters cut the frequencies at the filter frequency and
allow others to pass.

fx_biquad_filter(float filt_freq, float filt_resonance, BIQUAD_FILTER_TYPE filt_type, BI-
QUAD_FILTER_ORDER order)

Basic constructor for biquad filter.

// A stronger 6th order 200Hz low-pass filter to just let bass frequencies
→˓through
fx_biquad_filter simple_filt(200.0,

1.0,

(continues on next page)

70 Chapter 21. Class fx_biquad_filter

DreamMaker FX Documentation

(continued from previous page)

BIQUAD_TYPE_LPF,
BIQUAD_ORDER_6);

Parameters

• [in] filt_freq: This is the cutoff frequency or center frequency of the filter in Hertz.

• [in] filt_resonance: This is how quickly the filter “rolls off” – is it a gentle, wide filter or
a tight narrow filter? A value of 1.0 is no resonance; > 1.0 is more resonant, < 1.0 is less resonant.

• [in] filt_type: Filters come in lots of colors. Low-pass filters (LPF) cut higher frequen-
cies. High-pass filters (HPF) cut lower frequencies. Band-pass filters (BPF) cut frequencies on
both sides of the filter frequency. And notch filters cut the frequencies at the filter frequency and
allow others to pass.

• [in] order: The number of filtering stages – higher is more extreme filtering effect

fx_biquad_filter(float filt_freq, float filt_resonance, float filter_gain, BIQUAD_FILTER_TYPE
filt_type, EFFECT_TRANSITION_SPEED trans_speed)

Advanced constructor for biquad filter.

Parameters

• [in] filt_freq: This is the cutoff frequency or center frequency of the filter in Hertz.

• [in] filt_resonance: This is how quickly the filter “rolls off” – is it a gentle, wide filter or
a tight narrow filter? A value of 1.0 is no resonance; > 1.0 is more resonant, < 1.0 is less resonant.

• [in] filter_gain: The filter gain in dB (used in peaking and shelf filters)

• [in] filt_type: Filters come in lots of colors. Low-pass filters (LPF) cut higher frequen-
cies. High-pass filters (HPF) cut lower frequencies. Band-pass filters (BPF) cut frequencies on
both sides of the filter frequency. And notch filters cut the frequencies at the filter frequency and
allow others to pass.

• [in] trans_speed: When a new filter frequency or filter width is provided, the transition
speed determines how quickly the filter will transition.

fx_biquad_filter(float filt_freq, float filt_resonance, float filter_gain_db, BI-
QUAD_FILTER_TYPE filt_type, EFFECT_TRANSITION_SPEED
trans_speed, BIQUAD_FILTER_ORDER order)

Advanced constructor for biquad filter.

Parameters

• [in] filt_freq: This is the cutoff frequency or center frequency of the filter in Hertz.

• [in] filt_resonance: This is how quickly the filter “rolls off” – is it a gentle, wide filter or
a tight narrow filter? A value of 1.0 is no resonance; > 1.0 is more resonant, < 1.0 is less resonant.

• [in] filter_gain_db: The filter gain in dB (used in peaking and shelf filters)

• [in] filt_type: Filters come in lots of colors. Low-pass filters (LPF) cut higher frequen-
cies. High-pass filters (HPF) cut lower frequencies. Band-pass filters (BPF) cut frequencies on
both sides of the filter frequency. And notch filters cut the frequencies at the filter frequency and
allow others to pass.

• [in] trans_speed: When a new filter frequency or filter width is provided, the transition
speed determines how quickly the filter will transition.

21.2. Class Documentation 71

DreamMaker FX Documentation

• [in] order: The number of filtering stages – higher is more extreme filtering effect

void enable()
Enable the biquad filter (it is enabled by default)

void bypass()
Bypass the biquad filter (will just pass clean audio through)

void set_freq(float freq)
Sets a new cutoff/critical frequency (Hz).

Parameters

• [in] freq: The new center frequency for the filter in Hz (must be lower than 24000.0)

void set_q(float q)
Sets a new Q factor for the filter. For more information on Q factor, read this: https://en.wikipedia.org/
wiki/Q_factor.

Parameters

• [in] q: The Q factor (must be between 0.01 and 100.0)

void set_resonance(float filt_resonance)
Sets the resonance; 1.0 is none (0.7071)

Parameters

• [in] filt_resonance: The resonance (must be between 0.01 and 100.0)

void set_gain(float gain)
Sets the filter gain. This is only used in shelving filters.

Parameters

• [in] gain: The gain in dB

void print_params(void)
Print the parameters for this effect.

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *freq
Control routing node: center/critical frequency of the filter in Hz (i.e. 800.0 for 800Hz)

fx_control_node *q
Control routing node: width of the filter

fx_control_node *gain
Control routing node: gain of the filter (used in shelving filters)

72 Chapter 21. Class fx_biquad_filter

https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Q_factor

CHAPTER

TWENTYTWO

CLASS FX_COMPRESSOR

• Defined in file_src_effects_dm_fx_compressor.h

22.1 Inheritance Relationships

22.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

22.2 Class Documentation

class fx_compressor : public fx_effect
Effect: Compressor/Limiter.

Think of a compressor as a small robot that controls a volume knob based on how loud you’re playing. When
you strike a loud chord, the robot immediately turns the volume down and as the chord rings out, the robot
turns the volume up progressively, so it sounds like you’re just sustaining the chord. Instead of dying off, it
sounds steady for a few seconds as the robot is turning up the volume. Compressors are used a lot with acoustic
instruments and vocals but also with electric guitars too. A common in country music is running a Telecaster
through a compressor.

#include <dreammakerfx.h>

fx_compressor compressor_1(-30.0, // Initial threshold in dB
8, // Initial ratio (1:8)
10.0, // Attack (10ms)
100.0, // Release (100ms)
2.0); // Initial output gain (2x);

void setup() {
pedal.init(); // Initialize pedal

// Route audio through effects
pedal.route_audio(pedal.instr_in, compressor_1.input);
pedal.route_audio(compressor_1.output, pedal.amp_out);

pedal.add_bypass_button(FOOTSWITCH_LEFT); // Use left footswitch/LED to bypass
→˓effect

pedal.run(); // Run effects

(continues on next page)

73

DreamMaker FX Documentation

(continued from previous page)

}

void loop() {
// Run pedal service to take care of stuff
pedal.service();

if (pedal.pot_left.has_changed()) {. // Left pot sets threshold from -20dB to
→˓-70dB

compressor_1.set_threshold(-20 - (50.0 * pedal.pot_left.val);
}
if (pedal.pot_center.has_changed()) { // Center pot sets compression ration

→˓from 1:1 to 40:1
compressor_1.set_ratio(1.0+ (40.0 * pedal.pot_center.val));

}
if (pedal.pot_right.has_changed()) { // Right pot sets output gain from 1.0
→˓to 6.0

compressor_1.set_output_gain(1.0 + pedal.pot_right.val*5.0);
}

}

There are several cool things to do with compressors: Add a compressor on either side of a clipper to create
more dynamics, run two compressors through a LPF and HPF to create a multi-band compressor (where low
end and high end are compressed independently), vary compressor parameters with an LFO to get some wild
sounds.

Public Functions

fx_compressor(float thresh, float ratio, float attack, float release, float gain_out)
Constructs a new instance.

Parameters

• [in] thresh: Where the robot starts turning down the volume. This value is in decibels so a
good place to start is between -60.0 and -30.0

• [in] ratio: How aggressively the robot will turn down the volume when the input exceeds
the threshold. Values from 2-16 create a softer effect. A very high value of 100.0 creates a hard
ceiling.

• [in] attack: Time in milliseconds for robot to respond when a note exceeds the threshold.
Setting this to 20-30 will allow a bit of a peak to sneak through.

• [in] release: how long before the robot stops controlling volume after volume goes below
threshold

• [in] gain_out: output volume (from 1.0 and up)

void enable()
Enable the this_effect (it is enabled by default)

void bypass()
Bypass the this_effect (will just pass clean audio through)

void set_threshold(float threshold)
Sets the compressor threshold.

74 Chapter 22. Class fx_compressor

DreamMaker FX Documentation

Parameters

• [in] threshold: The threshold is where the robot starts turning down the volume. This
value is in decibels so a good place to start is between -60.0 and -30.0

void set_ratio(float ratio)
Sets the compression ratio.

Parameters

• [in] ratio: The ratio is how aggressively the robot will turn down the volume when the input
exceeds the threshold. Values from 2-16 create a softer effect. A very high value of 100.0 creates
a hard ceiling.

void set_attack(float attack)
Sets the time it takes for the compressor to be fully engaged after volume exceeds threshold.

Parameters

• [in] attack: The attack is the time in milliseconds for robot to respond when a note exceeds
the threshold. Setting this to 20-30 will allow a bit of a peak to sneak through.

void set_release(float release)
Sets the time it takes for the compressor to release the volume control when the volume goes back below
the threshold.

Parameters

• [in] release: The release is the time in milliseconds for robot to respond when a note falls
below the threshold.

void set_output_gain(float gain_out)
Sets the output gain of the compressor.

Parameters

• [in] gain_out: The gain out (typically 1.0 for no gain adjustment and higher to increase
gain)

void print_params(void)

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *threshold
Control routing node [input]: Compressor/limiter threshold in dB (i.e. -30.0)

fx_control_node *ratio
Control routing node [input]: Compressor/limiter compression ratio (a value of 100.0 would be a ratio of
1:100)

22.2. Class Documentation 75

DreamMaker FX Documentation

fx_control_node *attack
Control routing node [input]: Compressor/limiter attack rate in milliseconds

fx_control_node *release
Control routing node [input]: Compressor/limiter release rate in milliseconds

fx_control_node *out_gain
Control routing node [input]: Compressor/limiter output gain (linear value so a value of 2.0 would double
the signal amplitude)

76 Chapter 22. Class fx_compressor

CHAPTER

TWENTYTHREE

CLASS FX_DELAY

• Defined in file_src_effects_dm_fx_delay.h

23.1 Inheritance Relationships

23.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

23.2 Class Documentation

class fx_delay : public fx_effect
Effect: Delay/echo.

A delay effect is basically an echo machine. Unlike other delay pedals, we have a massive amount of delay
memory so you can create delays that are several seconds long. Also, this delay block allows you to add your
own effects to the “feedback” path of the echo so each echo can run though an effects chain. Put a pitch shifter
in here and each echo changes pitch. Add a phase shifter and each echo gets progressively “phasey”. Put another
echo effect in there and create effects like the movie Inception.

This example creates a delay and places a low-pass dampening filter in the feedback loop so each echo gets
darker and darker.

#include <dreammakerfx.h>

fx_delay delay_1(1000.0, // Initial delay length of 1 second / 1000ms
5000.0, // Max delay of 5 seconds
0.7, // Initial feedback value of 0.7
1.0, // Clean mix
0.7, // Delay / echo mix
true); // Enable fx send/receive loop

fx_biquad_filter fb_filt(1200.0, // 1200 Hz starting frequency
FILTER_WIDTH_NORMAL, // Width of the filter is narrow
BIQUAD_TYPE_LPF); // Type is low-pass

void setup() {
pedal.init(); // Initialize pedal

// Route audio through effects

(continues on next page)

77

DreamMaker FX Documentation

(continued from previous page)

pedal.route_audio(pedal.instr_in, delay_1.input);
pedal.route_audio(delay_1.output, pedal.amp_out);

// Route filter through delay fx send/receive loop
pedal.route_audio(delay_1.fx_send, fb_filt.input);
pedal.route_audio(fb_filt.output, delay_1.fx_receive);

pedal.add_bypass_button(FOOTSWITCH_LEFT); // Use left footswitch/LED to bypass
→˓effect

pedal.run(); // Run effects
}

void loop() {
pedal.service(); // Run pedal service to take care of stuff

}

There are lots of cool things you can do with delays: Create a set of delays in parallel with lengths (1000ms,
750ms, 333ms) to create cool rhythmic echoes, create elaborate effects chains in the delay’s feedback loop, add
delays into the feedback fx send/receive loop of the delay, control a filter from a delayed version of a signal

Public Functions

fx_delay(float delay_len_ms, float feedback)
Basic constructor for delay effect.

// Set up a basic 1 second echo
fx_delay delay_1(1000.0, // Initial delay length of 1 second / 1000ms

0.7); // Initial feedback value of 0.7

Parameters

• [in] delay_len_ms: The length of the echo in milliseconds (1000.0 milliseconds = 1 sec-
ond). For the advanced constructor, the delay_len_max_ms determines the total memory allocated
for this delay and will be the max length. In the basic constructor, the initial length is also the
maximum delay length.

• [in] feedback: How much of the output is feedback to the input. A value of 0.0 will product
a single delay. A value of 1.0 will produce endless echoes. 0.5-0.7 is a nice decaying echo.

fx_delay(float delay_len_ms, float delay_len_max_ms, float feedback, float mix_dry, float mix_wet,
bool enable_ext_fx)

Advanced constructor for delay effect.

// Set up a delay with max delay of 5 seconds and an fx send/receive loop
fx_delay delay_1(1000.0, // Initial delay length of 1 second / 1000ms

5000.0, // Max delay of 5 seconds
0.7, // Initial feedback value of 0.7
1.0, // Clean mix
0.7, // Delay / echo mix
true); // Enable fx send/receive loop

Parameters

78 Chapter 23. Class fx_delay

DreamMaker FX Documentation

• [in] delay_len_ms: The length of the echo in milliseconds (1000.0 milliseconds = 1 sec-
ond). For the advanced constructor, the delay_len_max_ms determines the total memory allocated
for this delay and will be the max length. In the basic constructor, the initial length is also the
maximum delay length.

• [in] delay_len_max_ms: The maximum length of the delay (if the delay length is modi-
fied)

• [in] feedback: How much of the output is feedback to the input. A value of 0.0 will product
a single delay. A value of 1.0 will produce endless echoes. 0.5-0.7 is a nice decaying echo.

• [in] mix_dry: The mix of the clean signal (0.0 to 1.0)

• [in] mix_wet: The mix of the delayed/echo signal (0.0 to 1.0)

• [in] enable_ext_fx: Whether or not to enable the fx send / receive loop (true or false)

void enable()
Enables the delay effect.

void bypass()
Bypass the delay effect (will just pass clean audio through)

void set_length_ms(float len_ms)
Update the length of the delay. Note, if you used the simple constructor, the length of the delay needs to
be less than or equal to the initial delay value. If you want the ability to set a longer delay than the initial
value, use the advanced constructor as this will allow you to also specify the total amount of delay space
to allocate which is then the maximum length of a delay.

void set_feedback(float feedback)
Updates the feedback parameter of the delay.

Parameters

• [in] feedback: How much of the output is feedback to the input. A value of 0.0 will product
a single delay. A value of 1.0 will produce endless echoes. 0.5-0.7 is a nice decaying echo.

void set_dry_mix(float dry_mix)
Sets the dry mix.

Parameters

• [in] dry_mix: The mix of the clean signal (0.0 to 1.0)

void set_wet_mix(float wet_mix)
Updates the wet / delay mix of the delay (0.0 to 1.0)

Parameters

• [in] wet_mix: The mix of the delayed/echo signal (0.0 to 1.0)

23.2. Class Documentation 79

DreamMaker FX Documentation

Public Members

fx_audio_node *input
Audio routing node [input]: primary audio input

fx_audio_node *output
Audio routing node [output]: primary audio output

fx_audio_node *fx_send
Audio routing node [output]: effect loop send before entering delay line of this effect

// Route audio through effects
pedal.route_audio(pedal.instr_in, delay_1.input);
pedal.route_audio(delay_1.output, pedal.amp_out);

// Route filter through delay fx send/receive loop
pedal.route_audio(delay_1.fx_send, fb_filt.input);
pedal.route_audio(fb_filt.output, delay_1.fx_receive);

fx_audio_node *fx_receive
Audio routing node [output]: effect loop return before entering delay line of this effect

// Route audio through effects
pedal.route_audio(pedal.instr_in, delay_1.input);
pedal.route_audio(delay_1.output, pedal.amp_out);

// Route filter through delay fx send/receive loop
pedal.route_audio(delay_1.fx_send, fb_filt.input);
pedal.route_audio(fb_filt.output, delay_1.fx_receive);

fx_control_node *length_ms
Control routing node [input]: Length of delay line in milliseconds (1/1000s of a second)

fx_control_node *feedback
Control routing node [input]: Feedback ratio (between 0.0 and 1.0)

fx_control_node *dry_mix
Control routing node [input]: Dry mix (between 0.0 and 1.0)

fx_control_node *wet_mix
Control routing node [input]: Wet mix (between 0.0 and 1.0)

80 Chapter 23. Class fx_delay

CHAPTER

TWENTYFOUR

CLASS FX_DESTRUCTOR

• Defined in file_src_effects_dm_fx_destructor.h

24.1 Inheritance Relationships

24.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

24.2 Class Documentation

class fx_destructor : public fx_effect
Effect: Destructor - provides various types of hard and soft destructors for creating different types of distortions.

Here’s a nice summary of clipping using polynomials to create various types of distortions topic: http://sites.
music.columbia.edu/cmc/music-dsp/FAQs/guitar_distortion_FAQ.html

Public Functions

fx_destructor(float param_1, DESTRUCTOR_TYPE clip_type)
Basic constructor for the destructor (for models with one parameter)

Parameters

• [in] param_1: The first parameter of the destructor (varies by destructor type)

• [in] clip_type: Destructor function; See DESTRUCTOR_TYPE in Special parameters and
constants

fx_destructor(float param_1, float param_2, DESTRUCTOR_TYPE clip_type)
Basic constructor for the destructor (for models with one parameter)

Parameters

• [in] param_1: The first parameter of the destructor (varies by destructor type)

• [in] param_2: The second parameter of the destructor (varies by destructor type)

• [in] clip_type: Destructor function; See DESTRUCTOR_TYPE in Special parameters and
constants

81

http://sites.music.columbia.edu/cmc/music-dsp/FAQs/guitar_distortion_FAQ.html
http://sites.music.columbia.edu/cmc/music-dsp/FAQs/guitar_distortion_FAQ.html

DreamMaker FX Documentation

fx_destructor(float param_1, float param_2, float output_gain, DESTRUCTOR_TYPE clip_type)
Advanced constructor for the destructor.

Parameters

• [in] param_1: The first parameter of the destructor (varies by destructor type)

• [in] param_2: The second parameter of the destructor (varies by destructor type)

• [in] output_gain: The output stage gain (linear)

• [in] clip_type: Destructor function; See DESTRUCTOR_TYPE in Special parameters and
constants

void enable()
Enable the destructor (it is enabled by default)

void bypass()
Bypass the destructor (will just pass clean audio through)

void set_param_1(float new_param_1)
Sets the clipping threshold.

Parameters

• [in] threshold: The threshold for clipping should be between 0.1 and 1.0. A value of 0.1
will provide aggressive clipping where as a value of 0.8 will provide more gentle clipping.

void set_clipping_threshold(float new_clip)
Sets the clipping threshold when using SMOOTH_CLIP, SMOOTHER_CLIP or SMOOTH_FUZZ.

Parameters

• [in] new_clip: The new clipping threshold (typically around 0.1)

void set_param_2(float new_param_2)
Sets the input drive before the destructor.

Parameters

• [in] drive: The drive a value that the incoming signal will get multiplied by before entering
the destructor.

void set_input_drive(float new_drive)
Sets the input drive when using SMOOTH_CLIP, SMOOTHER_CLIP or SMOOTH_FUZZ.

Parameters

• [in] new_drive: The new input drive (1.0 is no input gain, >1 will drive input signal into
saturation)

void set_output_gain(float new_gain)
Sets the output gain of the destructors.

Parameters

• [in] gain: The gain is the value that will be multiplied at the output stage of the destructor.

82 Chapter 24. Class fx_destructor

DreamMaker FX Documentation

void print_params(void)
Print the parameters for this effect.

Public Members

fx_audio_node *input
Audio routing node [input]: primary audio input

fx_audio_node *output
Audio routing node [output]: primary audio output

fx_control_node *param_1
Control routing node [input]: clipping threshold (0.0 -> 1.0)

fx_control_node *param_2
Control routing node [input]: input drive multiplier before destructor (up to 64.0)

fx_control_node *output_gain
Control routing node [input]: output gain (linear)

24.2. Class Documentation 83

DreamMaker FX Documentation

84 Chapter 24. Class fx_destructor

CHAPTER

TWENTYFIVE

CLASS FX_ENVELOPE_TRACKER

• Defined in file_src_effects_dm_fx_envelope_tracker.h

25.1 Inheritance Relationships

25.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

25.2 Class Documentation

class fx_envelope_tracker : public fx_effect
Effect: Envelope tracker.

An envelope tracker creates a control signal that follows the volume of the audio running into it.

There is also a control signal built into the pedal itself that can be used for current volume. However, the
envelope tracker also provides discrete control for attack and release.

For more advanced envelope control, see the ADSR Envelope function.

Public Functions

fx_envelope_tracker(float attack_speed_ms, float decay_speed_ms, bool triggered)
Constructs a new envelope tracker instance.

Parameters

• [in] attack_speed_ms: The attack speed milliseconds

• [in] decay_speed_ms: The decay speed milliseconds

• [in] triggered: Indicates if triggered (should envelope value drop down to zero when new
note event is detected)

fx_envelope_tracker(float attack_speed_ms, float decay_speed_ms, bool triggered, float
ctrl_scale, float ctrl_offset)

void set_attack_speed_ms(float attack_speed_ms)

void set_decay_speed_ms(float decay_speed_ms)

85

DreamMaker FX Documentation

void set_env_scale(float scale)
Sets the envelope scale.

Parameters

• [in] scale: The scale value / multiplier

void set_env_offset(float offset)

void print_params(void)

Public Members

fx_audio_node *input

fx_control_node *decay_speed_ms
Control routing node: decay speed of envelope (milliseconds)

fx_control_node *attack_speed_ms
Control routing node: attack speeed of envelope (milliseconds)

fx_control_node *envelope
Control routing node: envelope signal

fx_control_node *scale
Control routing node: scale of envelope signal

fx_control_node *offset
Control routing node: offset of envelope signal

86 Chapter 25. Class fx_envelope_tracker

CHAPTER

TWENTYSIX

CLASS FX_GAIN

• Defined in file_src_effects_dm_fx_gain.h

26.1 Inheritance Relationships

26.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

26.2 Class Documentation

class fx_gain : public fx_effect
Effect: Gain - used to increase or decrease the volume of an audio signal.

Public Functions

fx_gain(float gain_val)
Basic constructor/initializer for gain.

Parameters

• [in] gain_val: The gain value

fx_gain(float gain_val, EFFECT_TRANSITION_SPEED gain_trans_speed)
Advanced constructor for the gain.

Parameters

• [in] gain_val: The gain value (typically between 0.0->1.0 to make a signal quiter and > 1.0
to make a signal louder)

• [in] gain_trans_speed: The gain transaction speed based on
EFFECT_TRANSITION_SPEED defined above (i.e. slow -> fast)

void enable()
Enable the this_effect (it is enabled by default)

void bypass()
Bypass the this_effect (will just pass clean audio through)

87

DreamMaker FX Documentation

void set_gain(float new_gain)
Sets the gain multiplier. For example, a value of 2 will double the volume/amplitude and a value of 0.5
will halve the volume/amplitude.

Parameters

• [in] new_gain: The new gain value (0.0 -> 4.0)

void set_gain_db(float new_gain_db)
Sets the gain multiplier using decibles. For example, a value of 0 will keep volume the same, a value of 6
will double the amplitude/volume, a value of -6 will halve the amplitude/volume.

Parameters

• [in] new_gain_db: The new gain value (dB)

void print_params(void)
Prints the parameters for the delay effect.

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *gain
Control routing node: gain value input - you can then link the envelope filter to this to create slow swell
effects

88 Chapter 26. Class fx_gain

CHAPTER

TWENTYSEVEN

CLASS FX_INSTRUMENT_SYNTH

• Defined in file_src_effects_dm_fx_instrument_synth.h

27.1 Inheritance Relationships

27.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

27.2 Class Documentation

class fx_instrument_synth : public fx_effect
Effect: Polyphonic instrument synth.

The instrument synth is capable of reading polyphonic notes from a stringed instrument and playing synth notes
in their place.

The instrument synth does not have an input. It is hard-wired into the instrument in jack of the pedal.

Public Functions

fx_instrument_synth(OSC_TYPES osc_type, float attack_ms, float filter_resonance, float fil-
ter_response)

Constructs a new instance of the instrument synth (basic constructor)

Parameters

• [in] osc_type: The type of oscillator

• [in] attack_ms: The attack milliseconds

• [in] filter_resonance: The filter resonance (1.0 is normal, > 1 increases resonance)

• [in] filter_response: How much the filter sweeps (0.0 to 1.0)

fx_instrument_synth(OSC_TYPES osc_type, OSC_TYPES fm_mod_osc_type, float
fm_mod_depth, float freq_ratio, float freq_ratio_fm_mod, float attack_ms,
float filter_resonance, float filter_response)

Constructs a new instance of the instrument synth (advanced constructor)

Parameters

89

DreamMaker FX Documentation

• [in] osc_type: The type of oscillator

• [in] fm_mod: The type of oscillator used for fm synthesis

• [in] fm_mod_depth: The depth of the fm synthesis (0.0 to 1.0)

• [in] freq_ratio: The frequency ratio of played note to synth note (e.g. 1.0 is same, 0.5 is
octave down, 2.0 is octave up)

• [in] freq_ratio_fm_mod: The frequency ratio of the fm modulation to synthesized note

• [in] attack_ms: The attack milliseconds

• [in] filter_resonance: The filter resonance (1.0 is normal, > 1 increases resonance)

• [in] filter_response: How much the filter sweeps

void enable()
Enable the instrument synth (it is enabled by default)

void bypass()
Bypass the instrument synth (will just pass zero audio through)

void set_freq_ratio(float ratio)
Sets the frequency ratio of the synth.

Parameters

• [in] ratio: Ratio of synthesized frequency to note playing. For example, a value of 1.0
would play the same note. A value of 0.5 would play a note an octave below. A value of 2.0
would play a note an octave above.

void set_fm_mod_ratio(float fm_mod_ratio)
Sets the fm modifier ratio.

Parameters

• [in] fm_mod_ratio: The fm modifier ratio relative to the frequency of the tone being played

void set_fm_mod_depth(float depth)
Sets the fm modifier depth.

Parameters

• [in] depth: The FM mod depth (0.0 -> 1.0)

void set_attack_ms(float attack_ms)
Sets the attack milliseconds.

Parameters

• [in] attack_ms: The attack milliseconds

void set_filter_resonance(float resonance)
Sets the filter resonance.

Parameters

• [in] resonance: The resonance of the filter

90 Chapter 27. Class fx_instrument_synth

DreamMaker FX Documentation

void set_filter_response(float response)
Sets the filter responsiveness.

Parameters

• [in] response: The response (0.0 is not responsive / static filter, 1.0 is very dynamic filter)

void set_oscillator_type(OSC_TYPES new_type)
Sets the the type of oscillator used as the primary synth.

Parameters

• [in] new_type: The new type of LFO (OSC_TYPES)

void set_oscillator_type_fm_mod(OSC_TYPES new_type)
Sets the the type of oscillator used as the primary synth.

Parameters

• [in] new_type: The new type of LFO (OSC_TYPES)

void print_params(void)
Prints the parameters for the instrument synth.

Public Members

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *attack_ms
Control routing node: Attack (ms) - attack rate of the synth in milliseconds

fx_control_node *freq_ratio
Control routing node: Frequency ratio - Ratio of synthesized frequency to note playing. For example, a
value of 1.0 would play the same note. A value of 0.5 would play a note an octave below. A value of 2.0
would play a note an octave above.

fx_control_node *fm_mod_freq_ratio
Control routing node: Frequency ratio of fm modulator - Ratio of fm modulator frequency to synth fre-
quency. A value of 1.0 would do fm mod at same frequency as note being synthesized.

fx_control_node *fm_mod_depth
Control routing node: Frequency mod depth

fx_control_node *resonance
Control routing node: Filter resonance - The resonance of the filter applied each synth voice. A value of
1.0 is no resonance, value higher than 1.0 increases resonance. Values below 1.0 (but higher than 0.0)
further smooth out the filter.

fx_control_node *response
Control routing node: Filter response - How far the filter sweeps with each played note

27.2. Class Documentation 91

DreamMaker FX Documentation

92 Chapter 27. Class fx_instrument_synth

CHAPTER

TWENTYEIGHT

CLASS FX_LOOPER

• Defined in file_src_effects_dm_fx_looper.h

28.1 Inheritance Relationships

28.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

28.2 Class Documentation

class fx_looper : public fx_effect
Effect: Looper - capture and playback loops.

Here’s a nice tutorial on how looper pedals work in general https://en.wikipedia.org/wiki/Live_looping

Public Functions

fx_looper(float looper_dry_mix, float looper_loop_mix, float looper_max_length_seconds, bool
looper_enable_loop_preprocessing)

Constructor/initializer for amplitude modulator.

fx_looper looper1(1.0, // Dry mix set to full
1.0, // Wet mix set to full
10, // Max loop length set to 10 seconds (can be

→˓way more)
false); // Do not use fx send/receive when recording

→˓loop

Parameters

• [in] looper_dry_mix: The looper dry mix

• [in] looper_loop_mix: The looper loop mix

• [in] looper_max_length_seconds: The looper maximum length seconds

• [in] looper_enable_loop_preprocessing: The looper enable loop preprocessing

93

https://en.wikipedia.org/wiki/Live_looping

DreamMaker FX Documentation

void enable()
Enable the this_effect (it is enabled by default)

void bypass()
Bypass the this_effect (will just pass clean audio through)

void start_loop_recording()

void stop_loop_recording()

void stop_loop_playback()

void set_playback_rate(float playback_rate)

void set_loop_mix(float new_loop_mix)
Sets the loop mix.

Parameters

• [in] new_loop_mix: The new loop mix value (0.0 -> 1.0)

void set_dry_mix(float new_dry_mix)
Sets the dry mix.

Parameters

• [in] new_dry_mix: The new dry mix value (0.0 -> 1.0)

void print_params(void)
Prints the parameters for the delay effect.

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_audio_node *preproc_send
Audio routing node: pre-loop effects send (process audio before it ends up in the loop)

fx_audio_node *preproc_receive
Audio routing node: pre-loop effects receive (process audio before it ends up in the loop)

fx_control_node *start
Control routing node: Trigger to start loop recording

fx_control_node *stop
Control routing node: Trigger to stop loop recording

fx_control_node *playback_rate
Control routing node: Loop playback rate (1.0 is recorded rate, > 1.0 is faster / higher pitch, < 1.0 is slower,
<0 is reverse)

fx_control_node *dry_mix
Control routing node: clean/dry mix

94 Chapter 28. Class fx_looper

DreamMaker FX Documentation

fx_control_node *loop_mix
Control routing node: clean/dry mix

fx_control_node *loop_length_seconds
Control routing node: [output] loop length - can be tied to things like delay length to create delay lines that
are synced to the loop length

fx_control_node *loop_length_seconds_set
Control routing node: [input] loop length - used to set loop length before a loop is recorded (to sync with
other loops)

28.2. Class Documentation 95

DreamMaker FX Documentation

96 Chapter 28. Class fx_looper

CHAPTER

TWENTYNINE

CLASS FX_MULTITAP_DELAY

• Defined in file_src_effects_dm_fx_delay_multitap.h

29.1 Inheritance Relationships

29.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

29.2 Class Documentation

class fx_multitap_delay : public fx_effect
Effect: Multi-tap delay.

A multi-tap delay is a delay line that has multiple read “taps” set a different delay lenghts. Multi-tap delays can
be used to create interesting rhythmic effects and are also a foundational building block of reverbs.

Here an example of using a multi-tap delay to generate early reflections in a reverb algorithm

fx_multitap_delay early_reflections(10.5, 0.2, // Tap 1 (length and gain)
13.5, 0.2, // Tap 2 (length and gain)
16.0, 0.2, // Tap 3 (length and gain)
19.5, 0.2, // Tap 4 (length and gain)
0.5, // Dry mix
0.5); // Effect mix

Public Functions

fx_multitap_delay(float tap_len_1_ms, float gain_1, float tap_len_2_ms, float gain_2, float
tap_len_3_ms, float gain_3, float tap_len_4_ms, float gain_4, float dry_mix,
float wet_mix)

Basic constructor for the multi-tap delay effect.

If a tap isn’t being used, set its delay length to zero

Parameters

• [in] tap_len_1_ms: The tap 1 length 1 milliseconds

• [in] gain_1: The gain of tap

97

DreamMaker FX Documentation

• [in] tap_len_2_ms: The tap 2 length 2 milliseconds

• [in] gain_2: The gain of tap

• [in] tap_len_3_ms: The tap 3 length 3 milliseconds

• [in] gain_3: The gain of tap

• [in] tap_len_4_ms: The tap 4 length 4 milliseconds

• [in] gain_4: The gain of tap

• [in] dry_mix: The dry mix

• [in] wet_mix: The wet mix

void enable()
Enable the multitap delay (it is enabled by default)

void bypass()
Bypass the multitap delay (will just pass clean audio through)

void set_dry_mix(float dry_mix)
Updates the dry / clean mix of the multitap delay (0.0 to 1.0)

Parameters

• [in] dry_mix: The new dry mix

void set_wet_mix(float wet_mix)
Updates the wet / delay mix of the multitap delay (0.0 to 1.0)

Parameters

• [in] wet_mix: The new wet mix

Public Members

fx_audio_node *input
Audio routing node [input]: primary audio input

fx_audio_node *output
Audio routing node [output]: primary audio output

98 Chapter 29. Class fx_multitap_delay

CHAPTER

THIRTY

CLASS FX_OSCILLATOR

• Defined in file_src_effects_dm_fx_oscillators.h

30.1 Inheritance Relationships

30.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

30.2 Class Documentation

class fx_oscillator : public fx_effect
Utility: Oscillator that can has both audio and control outputs.

Public Functions

fx_oscillator(OSC_TYPES osc_type, float freq, float amplitude)
Basic constructor for an oscillator when used as an audio source.

Parameters

• [in] osc_type: The osc type (see OSC_TYPES)

• [in] freq: The frequency in Hz

• [in] amplitude: The amplitude (linear scale e.g. 0.0 -> 1.0 typically)

fx_oscillator(OSC_TYPES osc_type, float freq, float amplitude, float initial_phase)
Basic constructor for an oscillator used as a control source.

Parameters

• [in] osc_type: The osc type (see OSC_TYPES)

• [in] freq: The frequency in Hz

• [in] amplitude: The amplitude (linear scale e.g. 0.0 -> 1.0 typically)

• [in] initial: phase The initial phase of the oscillator in degrees (0-360)

99

DreamMaker FX Documentation

void enable()
Enable the oscillator (it is enabled by default)

void bypass()
Bypass the oscillator (it will provide just a constant value)

void set_frequency(float freq)
Upates the frequency in Hz of the current oscillator.

Parameters

• [in] freq: The frequency in Hz

void set_amplitude(float amplitude)
Updates the amplitude for the current oscillator.

Parameters

• [in] amplitude: The amplitude (linear)

void set_oscillator_type(OSC_TYPES new_type)
Sets the oscillator type.

Parameters

• [in] new_type: The new type of oscillator (OSC_TYPES)

void print_params(void)
Print the parameters for this effect.

Public Members

fx_audio_node *output
Audio routing node: primary audio oscillator output

fx_control_node *freq
Control routing node: frequency of the oscillator in Hz

fx_control_node *amplitude
Control routing node: amplitude of the oscillator (linear, typically between 0.0 and 1.0)

fx_control_node *offset
Control routing node: The DC offset of the amplifier. Useful if you’re using this to control parameters in
ranges not centered around 0.0.

fx_control_node *value
Control routing node: The current value of the oscillator. Connect this node to external oscillator nodes
for effects.

100 Chapter 30. Class fx_oscillator

CHAPTER

THIRTYONE

CLASS FX_PHASE_SHIFTER

• Defined in file_src_effects_dm_fx_phase_shifter.h

31.1 Inheritance Relationships

31.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

31.2 Class Documentation

class fx_phase_shifter : public fx_effect
Effect: Phase shifter for creating rich phase shifts.

Example: phase_shifter_1.c

Public Functions

fx_phase_shifter(float rate_hz, float depth, float feedback)
Basic constructor/initializer for the phase shifter.

Parameters

• [in] rate_hz: The rate hz of the LFO modulating the phase shifter

• [in] depth: The depth of the phase shifter

• [in] feedback: The feedback of the phase shifter

fx_phase_shifter(float rate_hz, float depth, float feedback, float inital_phase, OSC_TYPES
mod_type)

Constructs a new instance.

Parameters

• [in] rate_hz: The rate hz of the LFO modulating the phase shifter

• [in] depth: The depth of the phase shifter (0.0 -> 1.0)

• [in] feedback: The feedback of the phase shifter (-1.0 -> 1.0)

101

DreamMaker FX Documentation

• [in] inital_phase: The inital phase in degrees of the LFO

• [in] mod_type: The modifier type (OSC_TYPES)

void enable()
Enable the phase shifter (it is enabled by default)

void bypass()
Bypass the phase shifter (will just pass clean audio through)

void set_depth(float depth)
Sets the depth of the phase shifter.

Parameters

• [in] depth: The depth fom 0.0 -> 1.0. 0.0 is no modulation at all, 1.0 is full modulation.

void set_rate_hz(float rate_hz)
Sets the rate of the phase shifter in Hertz (cycles per second)

Parameters

• [in] rate_hz: The rate hz

void set_feedback(float feedback)
Sets the feedback of the phase shifter.

Parameters

• [in] feedback: Feedback value (between -1.0 and 1.0)

void set_lfo_type(OSC_TYPES new_type)
Sets the the type of oscillator used as the LFO.

Parameters

• [in] new_type: The new type of LFO (OSC_TYPES)

void print_params(void)
Print the parameters for this effect.

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *depth
Control routing node: phase shifter depth (should be between 0.0 and 1.0)

fx_control_node *rate_hz
Control routing node: phase shifter rate (Hz) (i.e. 1.0 = once per second)

fx_control_node *feedback
Control routing node: phase shifter feedback (should be between -1.0 and 1.0)

102 Chapter 31. Class fx_phase_shifter

CHAPTER

THIRTYTWO

CLASS FX_PITCH_SHIFT

• Defined in file_src_effects_dm_fx_pitch_shift.h

32.1 Inheritance Relationships

32.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

32.2 Class Documentation

class fx_pitch_shift : public fx_effect
Effect: Pitch shifter - shifts audio up or down in pitch.

This is a de-glitching, time-domain based implmentation. Also see the fx_pitch_shift_fd pitch shifter which
provides a frequency-domain based approach (phase vocoder).

Public Functions

fx_pitch_shift(float pitch_shift_freq)

void enable()
Enable the pitch shifter (it is enabled by default)

void bypass()
Bypass the pitch shifter (will just pass clean audio through)

void set_freq_shift(float freq_shift)
Update the pitch shifter value. A freq_shift of 0.5 will drop down one octave. A value of 2.0 will go up
one octave. A value of 1.0 will play at current pitch (no shift).

Parameters

• [in] freq_shift: The frequency shift

void print_params(void)
Print the parameters for this effect.

103

DreamMaker FX Documentation

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *freq_shift

104 Chapter 32. Class fx_pitch_shift

CHAPTER

THIRTYTHREE

CLASS FX_PITCH_SHIFT_FD

• Defined in file_src_effects_dm_fx_spectralizer.h

33.1 Inheritance Relationships

33.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

33.2 Class Documentation

class fx_pitch_shift_fd : public fx_effect
Effect: Pitch shifter - shifts audio up or down in pitch.

This effect uses a phase vocoder to perform the pitch shift so it can perform multiple pitch shifts at the same
time.

Public Functions

fx_pitch_shift_fd(float freq, float volume, float volume_clean)
Basic constructor/initializer for the frequency-domain based pitch shifter.

When setting the frequency, you can utilize a set of constants that define various semitone relationships.
The constant SEMI_TONE_10, for example, is 10 semitones above the current note. Adding an N for
negative moves the tones below the note. For example, the constant SEMI_TONE_N17 is 17 semitones
below the current note.

fx_pitch_shift_fd pitch_shift(SEMI_TONE_7, // Set pitch shift to fifth
→˓above (7 semitones) or approx 1.5

0.7, // Pitch shift mix
1.0); // Clean mix

Parameters

• [in] freq: The relative frequency shift (2.0 would be an octave up, 0.5 would be an octave
down)

• [in] vol: The volume/mix of frequency shifted audio

• [in] vol_clean: The volume/mix of the clean audio

105

DreamMaker FX Documentation

fx_pitch_shift_fd(float freq_1, float volume_1, float freq_2, float volume_2, float volume_clean)
Advanced constructor/initializer for the frequency-domain based pitch shifter.

When setting the frequency, you can utilize a set of constants that define various semitone relationships.
The constant SEMI_TONE_10, for example, is 10 semitones above the current note. Adding an N for
negative moves the tones below the note. For example, the constant SEMI_TONE_N17 is 17 semitones
below the current note.

fx_pitch_shift_fd pitch_shift(SEMI_TONE_7, // First shift is a fifth above
0.7, // First tone volume is 0.7
SEMI_TONE_12, // Second shift is an octave

→˓above
0.5, // Second tone volume is 0.5
1.0); // Clean mix set to 1.0

Parameters

• [in] freq_1: The first relative frequency shift (2.0 would be an octave up, 0.5 would be an
octave down)

• [in] volume_1: The volume of the first frequency shifted tone

• [in] freq_2: The second relative frequency shift (2.0 would be an octave up, 0.5 would be
an octave down)

• [in] volume_2: The volume of the second frequency shifted tone

• [in] volume_clean: The clean volume

void enable()
Enable the pitch shifter (it is enabled by default)

void bypass()
Bypass the pitch shifter (will just pass clean audio through)

void set_freq_shift_1(float new_freq_shift)
Sets the pitch shifter value. A freq_shift of 0.5 will drop down one octave. A value of 2.0 will go up one
octave. A value of 1.0 will play at current pitch (no shift).

When setting the frequency, you can also utilize a set of constants that define various semitone relation-
ships. The constant SEMI_TONE_10, for example, is 10 semitones above the current note. Adding an N
for negative moves the tones below the note. For example, the constant SEMI_TONE_N17 is 17 semitones
below the current note.

Parameters

• [in] new_freq_shift: The frequency shift

void set_freq_shift_2(float new_freq_shift)
Sets the second pitch shifter value. A freq_shift of 0.5 will drop down one octave. A value of 2.0 will go
up one octave. A value of 1.0 will play at current pitch (no shift).

When setting the frequency, you can also utilize a set of constants that define various semitone relation-
ships. The constant SEMI_TONE_10, for example, is 10 semitones above the current note. Adding an N
for negative moves the tones below the note. For example, the constant SEMI_TONE_N17 is 17 semitones
below the current note.

Parameters

106 Chapter 33. Class fx_pitch_shift_fd

DreamMaker FX Documentation

• [in] new_freq_shift: The frequency shift

void set_vol_1(float new_vol_1)
Sets the volume/gain of the first pitch shift channel.

Parameters

• [in] vol_1: The volume level (0.0 to 1.0)

void set_vol_2(float new_vol_2)
Sets the volume/gain of the second pitch shift channel (if used)

Parameters

• [in] vol_2: The volume level (0.0 to 1.0)

void set_vol_clean(float new_vol_clean)
Sets the clean mix.

Parameters

• [in] vol_2: The volume level (0.0 to 1.0)

void print_params(void)
Print the parameters for this effect.

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output
Audio routing node: primary audio output

fx_control_node *freq_shift_1
Control routing node: first pitch shift amount

fx_control_node *freq_shift_2
Control routing node: second pitch shift amount

fx_control_node *vol_1
Control routing node: volume of first pitch shift channel

fx_control_node *vol_2
Control routing node: volume of second pitch shift channel

fx_control_node *vol_clean
Control routing node: clean mix

33.2. Class Documentation 107

DreamMaker FX Documentation

108 Chapter 33. Class fx_pitch_shift_fd

CHAPTER

THIRTYFOUR

CLASS FX_RING_MOD

• Defined in file_src_effects_dm_fx_ring_modulator.h

34.1 Inheritance Relationships

34.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

34.2 Class Documentation

class fx_ring_mod : public fx_effect
Effect: Ring modulator - frequency modulates the audio - crazy sounding.

The following example is a full ring modulator pedal with tone control, wet/dry mix and of course ring modula-
tor.

___ring_mod_1.c___

Public Functions

fx_ring_mod(float ring_mod_freq, float ring_mod_depth)
Basic constructor/initializer for the ring modulator.

Parameters

• [in] ring_mod_freq: The ring modifier frequency

• [in] ring_mod_depth: The ring modifier depth

fx_ring_mod(float ring_mod_freq, float ring_mod_depth, bool enable_filter)
Advanced constructor/initializer for the ring modulator.

Parameters

• [in] ring_mod_freq: The ring modifier frequency

• [in] ring_mod_depth: The ring modifier depth

• [in] enable_filter: Removes lower harmonics and creates more of a pitch shifting effect
(less crazy)

109

DreamMaker FX Documentation

void enable()
Enable the ring modulator (it is enabled by default)

void bypass()
Bypass the ring modulator (will just pass clean audio through)

void set_freq(float new_freq)
Sets the carrier frequency of the ring moduator (Hz)

Parameters

• [in] new_freq: The new frequency

void set_depth(float new_depth)
Sets the depth of the ring modulator (0.0 -> 1.0)

Parameters

• [in] new_depth: The new depth

void print_params(void)
Prints the parameters for the delay effect.

Public Members

fx_audio_node *input
Audio routing node [input]: primary audio input

fx_audio_node *output
Audio routing node [output]: primary audio output

fx_control_node *freq
Control routing node [input]: the carrier frequency of the ring moduator (Hz)

fx_control_node *depth
Control routing node [input]: modulation depth

110 Chapter 34. Class fx_ring_mod

CHAPTER

THIRTYFIVE

CLASS FX_SLICER

• Defined in file_src_effects_dm_fx_slicer.h

35.1 Inheritance Relationships

35.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

35.2 Class Documentation

class fx_slicer : public fx_effect
Effect: Slicer - chops up audio in the time domain and pipes to different effects.

Example: ___slicer_1.c___

Public Functions

fx_slicer(float period_ms, int32_t channels)
Basic constructor/initializer for the slicer.

Parameters

• [in] period_ms: The period in milliseconds

• [in] channels: The number of channels to slice between during the period

void enable()
Enable the slicer (it is enabled by default)

void bypass()
Bypass the slicer (will just pass clean audio through)

void set_period_ms(float period)
Upates the period in milliseconds for the slicer.

Parameters

• [in] period: The period in milliseconds (thousands of a second)

111

DreamMaker FX Documentation

void print_params(void)
Print the parameters for this effect.

Public Members

fx_audio_node *input
Audio routing node: primary audio input

fx_audio_node *output_1
Audio routing node: audio output for slicer channel 0

fx_audio_node *output_2
Audio routing node: audio output for slicer channel 1

fx_audio_node *output_3
Audio routing node: audio output for slicer channel 2

fx_audio_node *output_4
Audio routing node: audio output for slicer channel 3

fx_audio_node *output_5
Audio routing node: audio output for slicer channel 4

fx_audio_node *output_6
Audio routing node: audio output for slicer channel 5

fx_audio_node *output_7
Audio routing node: audio output for slicer channel 6

fx_audio_node *output_8
Audio routing node: audio output for slicer channel 7

fx_control_node *period
Control routing node: period in in milliseconds

fx_control_node *start
Control routing node: restarts the sequence at position 0 for triggering with a new note

112 Chapter 35. Class fx_slicer

CHAPTER

THIRTYSIX

CLASS FX_VARIABLE_DELAY

• Defined in file_src_effects_dm_fx_variable_delay.h

36.1 Inheritance Relationships

36.1.1 Base Type

• public fx_effect (exhale_class_classfx__effect)

36.2 Class Documentation

class fx_variable_delay : public fx_effect
Effect: Variable delay - foundational block of flangers and choruses.

The variable delay effect is the basis for a number of time-varying delay effects like chorus, flanger, phaser,
vibrato, Leslie simulator, etc.

Here’s a nice tutorial on how variable delays work in these various building blocks: https://www.dsprelated.
com/freebooks/pasp/Time_Varying_Delay_Effects.html

Example: ___var_del_1.c___

Public Functions

fx_variable_delay(float rate_hz, float depth, float feedback, OSC_TYPES mod_type)
Basic constructor/initializer for variable delay.

Parameters

• [in] rate_hz: The modulation rate in Hz

• [in] depth: The modulation depth (0.0 -> 1.0)

• [in] feedback: The feedback from output to input (-1.0 -> 1.0)

• [in] mod_type: The shape of the waveform used to modulate (e.g. OSC_SINE, OSC_TRI,
etc.)

fx_variable_delay(float rate_hz, float depth, float feedback, float buf_size_ms, float mix_clean,
float mix_delayed, OSC_TYPES mod_type, bool ext_mod)

Basic constructor/initializer for variable delay.

113

https://www.dsprelated.com/freebooks/pasp/Time_Varying_Delay_Effects.html
https://www.dsprelated.com/freebooks/pasp/Time_Varying_Delay_Effects.html

DreamMaker FX Documentation

Parameters

• [in] rate_hz: The modulation rate in Hz

• [in] depth: The modulation depth (0.0 -> 1.0)

• [in] feedback: The feedback from output to input (-1.0 ->1.0)

• [in] buf_size_ms: The size of the audio in milliseconds (start wtih a value around 30)

• [in] mix_clean: The clean mix. If this is set to 0.0, then you’ll just get the pitch changing
aspect of the wave that can used for tape delay simulators, etc.

• [in] mix_delayed: The delayed signal mix.

• [in] mod_type: The shape of the waveform used to modulate (e.g. OSC_SINE, OSC_TRI,
etc.)

• [in] ext_mod: whether to use an external modulation source (set to true or false)

fx_variable_delay(float rate_hz, float depth, float feedback, float buf_size_ms, float mix_clean,
float mix_delayed, OSC_TYPES mod_type, bool ext_mod, float initial_phase)

Basic constructor/initializer for variable delay.

Parameters

• [in] rate_hz: The modulation rate in Hz

• [in] depth: The modulation depth (0.0 -> 1.0)

• [in] feedback: The feedback from output to input (-1.0 ->1.0)

• [in] buf_size_ms: The size of the audio in milliseconds (start wtih a value around 30)

• [in] mix_clean: The clean mix. If this is set to 0.0, then you’ll just get the pitch changing
aspect of the wave that can used for tape delay simulators, etc.

• [in] mix_delayed: The delayed signal mix.

• [in] mod_type: The shape of the waveform used to modulate (e.g. OSC_SINE, OSC_TRI,
etc.)

• [in] ext_mod: whether to use an external modulation source (set to true or false)

• [in] initial_phase: Initial phase in degrees

void enable()
Enable the this_effect (it is enabled by default)

void bypass()
Bypass the this_effect (will just pass clean audio through)

void set_depth(float depth)
Updates the depth of the variable delay.

Parameters

• [in] depth: The new depth value

void set_rate_hz(float rate_hz)
Updates the rate (Hz) of the variable delay.

Parameters

114 Chapter 36. Class fx_variable_delay

DreamMaker FX Documentation

• [in] rate_hz: The new rate hz

void set_feedback(float feedback)
Updates the feedback parameter of the variable delay.

Parameters

• [in] feedback: The new feedback value (-1.0->1.0)

void set_mix_clean(float mix_clean)
Updates the clean mix of the variable delay.

Parameters

• [in] mix_clean: The new clean mix value

void set_mix_delayed(float mix_delayed)
Updates the delayed signal mix of the variable delay.

Parameters

• [in] mix_delayed: The new delayed mix value

void set_lfo_type(OSC_TYPES new_type)
Sets the the type of oscillator used as the LFO.

Parameters

• [in] new_type: The new type of LFO (OSC_TYPES)

void print_params(void)
Prints the parameters for this effect.

Public Members

fx_audio_node *input
Audio routing node [input]: primary audio input

fx_audio_node *output
Audio routing node [output]: primary audio output

fx_audio_node *ext_mod_in
Audio routine node [input]: use another signal as the modulator source such as an fx_oscillator. The
oscillator can be run though the clipper for example to create new types of waveforms.

fx_audio_node *modulated_out
Audio routing node [output]: just the pitch modulated signal without mixing in the original signal

fx_control_node *depth
Control routing node [input]: modulation depth

fx_control_node *rate_hz
Control routing node [input]: modulation rate in Hz

fx_control_node *feedback
Control routing node [input]: feedback

36.2. Class Documentation 115

DreamMaker FX Documentation

fx_control_node *mix_clean
Control routing node [input]: clean signal mix

fx_control_node *mix_delayed
Control routing node [input]: delayed signal mix

DreamMaker FX is an audio effects platform that is designed to help musicians easily invent and perform through
novel effects that have never been heard before.

DreamMaker FX is build around the Arduino platform making it easy to create and control complex effects. However,
unlike other Arduino-based effects platforms, audio processing on DreamMaker FX is done on a powerful SHARC
DSP. SHARC DSPs are specialized audio processors used in lots of high-end audio gear.

If you want to hear it in action, check out the Hear it in action.

Visit http://www.dreammakerfx.com to see the platform in action.

116 Chapter 36. Class fx_variable_delay

http://www.dreammakerfx.com

INDEX

F
fx_adsr_envelope (C++ class), 57
fx_adsr_envelope::attack_ms (C++ member),

59
fx_adsr_envelope::bypass (C++ function), 58
fx_adsr_envelope::decay_ms (C++ member),

59
fx_adsr_envelope::enable (C++ function), 58
fx_adsr_envelope::fx_adsr_envelope (C++

function), 58
fx_adsr_envelope::gain_out (C++ member),

59
fx_adsr_envelope::input (C++ member), 59
fx_adsr_envelope::output (C++ member), 59
fx_adsr_envelope::peak_ratio (C++ mem-

ber), 59
fx_adsr_envelope::release_ms (C++ mem-

ber), 59
fx_adsr_envelope::set_attack_ms (C++

function), 58
fx_adsr_envelope::set_decay_ms (C++ func-

tion), 59
fx_adsr_envelope::set_output_gain (C++

function), 59
fx_adsr_envelope::set_release_ms (C++

function), 59
fx_adsr_envelope::set_sustain_ms (C++

function), 59
fx_adsr_envelope::start (C++ member), 59
fx_adsr_envelope::sustain_ms (C++ mem-

ber), 59
fx_adsr_envelope::sustain_ratio (C++

member), 59
fx_adsr_envelope::value (C++ member), 59
fx_amplitude_mod (C++ class), 61
fx_amplitude_mod::bypass (C++ function), 63
fx_amplitude_mod::depth (C++ member), 63
fx_amplitude_mod::enable (C++ function), 63
fx_amplitude_mod::ext_mod_in (C++ mem-

ber), 63
fx_amplitude_mod::fx_amplitude_mod (C++

function), 62

fx_amplitude_mod::input (C++ member), 63
fx_amplitude_mod::output (C++ member), 63
fx_amplitude_mod::print_params (C++ func-

tion), 63
fx_amplitude_mod::rate_hz (C++ member), 63
fx_amplitude_mod::set_depth (C++ function),

63
fx_amplitude_mod::set_lfo_type (C++ func-

tion), 63
fx_amplitude_mod::set_rate_hz (C++ func-

tion), 63
fx_arpeggiator (C++ class), 65
fx_arpeggiator::freq (C++ member), 66
fx_arpeggiator::fx_arpeggiator (C++ func-

tion), 66
fx_arpeggiator::param_1 (C++ member), 66
fx_arpeggiator::param_2 (C++ member), 67
fx_arpeggiator::period_ms (C++ member), 66
fx_arpeggiator::print_params (C++ func-

tion), 66
fx_arpeggiator::set_duration_ms (C++

function), 66
fx_arpeggiator::set_time_scale (C++ func-

tion), 66
fx_arpeggiator::start (C++ member), 67
fx_arpeggiator::time_scale (C++ member),

66
fx_arpeggiator::vol (C++ member), 66
fx_biquad_filter (C++ class), 69
fx_biquad_filter::bypass (C++ function), 72
fx_biquad_filter::enable (C++ function), 72
fx_biquad_filter::freq (C++ member), 72
fx_biquad_filter::fx_biquad_filter (C++

function), 70, 71
fx_biquad_filter::gain (C++ member), 72
fx_biquad_filter::input (C++ member), 72
fx_biquad_filter::output (C++ member), 72
fx_biquad_filter::print_params (C++ func-

tion), 72
fx_biquad_filter::q (C++ member), 72
fx_biquad_filter::set_freq (C++ function),

72

117

DreamMaker FX Documentation

fx_biquad_filter::set_gain (C++ function),
72

fx_biquad_filter::set_q (C++ function), 72
fx_biquad_filter::set_resonance (C++

function), 72
fx_compressor (C++ class), 73
fx_compressor::attack (C++ member), 75
fx_compressor::bypass (C++ function), 74
fx_compressor::enable (C++ function), 74
fx_compressor::fx_compressor (C++ func-

tion), 74
fx_compressor::input (C++ member), 75
fx_compressor::out_gain (C++ member), 76
fx_compressor::output (C++ member), 75
fx_compressor::print_params (C++ function),

75
fx_compressor::ratio (C++ member), 75
fx_compressor::release (C++ member), 76
fx_compressor::set_attack (C++ function), 75
fx_compressor::set_output_gain (C++ func-

tion), 75
fx_compressor::set_ratio (C++ function), 75
fx_compressor::set_release (C++ function),

75
fx_compressor::set_threshold (C++ func-

tion), 74
fx_compressor::threshold (C++ member), 75
fx_delay (C++ class), 77
fx_delay::bypass (C++ function), 79
fx_delay::dry_mix (C++ member), 80
fx_delay::enable (C++ function), 79
fx_delay::feedback (C++ member), 80
fx_delay::fx_delay (C++ function), 78
fx_delay::fx_receive (C++ member), 80
fx_delay::fx_send (C++ member), 80
fx_delay::input (C++ member), 80
fx_delay::length_ms (C++ member), 80
fx_delay::output (C++ member), 80
fx_delay::set_dry_mix (C++ function), 79
fx_delay::set_feedback (C++ function), 79
fx_delay::set_length_ms (C++ function), 79
fx_delay::set_wet_mix (C++ function), 79
fx_delay::wet_mix (C++ member), 80
fx_destructor (C++ class), 81
fx_destructor::bypass (C++ function), 82
fx_destructor::enable (C++ function), 82
fx_destructor::fx_destructor (C++ func-

tion), 81, 82
fx_destructor::input (C++ member), 83
fx_destructor::output (C++ member), 83
fx_destructor::output_gain (C++ member),

83
fx_destructor::param_1 (C++ member), 83
fx_destructor::param_2 (C++ member), 83

fx_destructor::print_params (C++ function),
82

fx_destructor::set_clipping_threshold
(C++ function), 82

fx_destructor::set_input_drive (C++ func-
tion), 82

fx_destructor::set_output_gain (C++ func-
tion), 82

fx_destructor::set_param_1 (C++ function),
82

fx_destructor::set_param_2 (C++ function),
82

fx_envelope_tracker (C++ class), 85
fx_envelope_tracker::attack_speed_ms

(C++ member), 86
fx_envelope_tracker::decay_speed_ms

(C++ member), 86
fx_envelope_tracker::envelope (C++ mem-

ber), 86
fx_envelope_tracker::fx_envelope_tracker

(C++ function), 85
fx_envelope_tracker::input (C++ member),

86
fx_envelope_tracker::offset (C++ member),

86
fx_envelope_tracker::print_params (C++

function), 86
fx_envelope_tracker::scale (C++ member),

86
fx_envelope_tracker::set_attack_speed_ms

(C++ function), 85
fx_envelope_tracker::set_decay_speed_ms

(C++ function), 85
fx_envelope_tracker::set_env_offset

(C++ function), 86
fx_envelope_tracker::set_env_scale (C++

function), 86
fx_gain (C++ class), 87
fx_gain::bypass (C++ function), 87
fx_gain::enable (C++ function), 87
fx_gain::fx_gain (C++ function), 87
fx_gain::gain (C++ member), 88
fx_gain::input (C++ member), 88
fx_gain::output (C++ member), 88
fx_gain::print_params (C++ function), 88
fx_gain::set_gain (C++ function), 88
fx_gain::set_gain_db (C++ function), 88
fx_instrument_synth (C++ class), 89
fx_instrument_synth::attack_ms (C++ mem-

ber), 91
fx_instrument_synth::bypass (C++ function),

90
fx_instrument_synth::enable (C++ function),

90

118 Index

DreamMaker FX Documentation

fx_instrument_synth::fm_mod_depth (C++
member), 91

fx_instrument_synth::fm_mod_freq_ratio
(C++ member), 91

fx_instrument_synth::freq_ratio (C++
member), 91

fx_instrument_synth::fx_instrument_synth
(C++ function), 89

fx_instrument_synth::output (C++ member),
91

fx_instrument_synth::print_params (C++
function), 91

fx_instrument_synth::resonance (C++ mem-
ber), 91

fx_instrument_synth::response (C++ mem-
ber), 91

fx_instrument_synth::set_attack_ms (C++
function), 90

fx_instrument_synth::set_filter_resonance
(C++ function), 90

fx_instrument_synth::set_filter_response
(C++ function), 91

fx_instrument_synth::set_fm_mod_depth
(C++ function), 90

fx_instrument_synth::set_fm_mod_ratio
(C++ function), 90

fx_instrument_synth::set_freq_ratio
(C++ function), 90

fx_instrument_synth::set_oscillator_type
(C++ function), 91

fx_instrument_synth::set_oscillator_type_fm_mod
(C++ function), 91

fx_led (C++ class), 49
fx_led::fade_to_rgb (C++ function), 50, 51
fx_led::service (C++ function), 51
fx_led::set_rgb (C++ function), 50
fx_led::turn_off (C++ function), 50
fx_led::turn_on (C++ function), 49, 50
fx_looper (C++ class), 93
fx_looper::bypass (C++ function), 94
fx_looper::dry_mix (C++ member), 94
fx_looper::enable (C++ function), 93
fx_looper::fx_looper (C++ function), 93
fx_looper::input (C++ member), 94
fx_looper::loop_length_seconds (C++ mem-

ber), 95
fx_looper::loop_length_seconds_set (C++

member), 95
fx_looper::loop_mix (C++ member), 94
fx_looper::output (C++ member), 94
fx_looper::playback_rate (C++ member), 94
fx_looper::preproc_receive (C++ member),

94
fx_looper::preproc_send (C++ member), 94

fx_looper::print_params (C++ function), 94
fx_looper::set_dry_mix (C++ function), 94
fx_looper::set_loop_mix (C++ function), 94
fx_looper::set_playback_rate (C++ func-

tion), 94
fx_looper::start (C++ member), 94
fx_looper::start_loop_recording (C++

function), 94
fx_looper::stop (C++ member), 94
fx_looper::stop_loop_playback (C++ func-

tion), 94
fx_looper::stop_loop_recording (C++ func-

tion), 94
fx_multitap_delay (C++ class), 97
fx_multitap_delay::bypass (C++ function), 98
fx_multitap_delay::enable (C++ function), 98
fx_multitap_delay::fx_multitap_delay

(C++ function), 97
fx_multitap_delay::input (C++ member), 98
fx_multitap_delay::output (C++ member), 98
fx_multitap_delay::set_dry_mix (C++ func-

tion), 98
fx_multitap_delay::set_wet_mix (C++ func-

tion), 98
fx_oscillator (C++ class), 99
fx_oscillator::amplitude (C++ member), 100
fx_oscillator::bypass (C++ function), 100
fx_oscillator::enable (C++ function), 99
fx_oscillator::freq (C++ member), 100
fx_oscillator::fx_oscillator (C++ func-

tion), 99
fx_oscillator::offset (C++ member), 100
fx_oscillator::output (C++ member), 100
fx_oscillator::print_params (C++ function),

100
fx_oscillator::set_amplitude (C++ func-

tion), 100
fx_oscillator::set_frequency (C++ func-

tion), 100
fx_oscillator::set_oscillator_type (C++

function), 100
fx_oscillator::value (C++ member), 100
fx_pedal (C++ class), 43
fx_pedal::add_bypass_button (C++ function),

45
fx_pedal::add_tap_interval_button (C++

function), 45
fx_pedal::amp_out (C++ member), 48
fx_pedal::amp_out_l (C++ member), 48
fx_pedal::amp_out_r (C++ member), 48
fx_pedal::audio_node_stack (C++ member),

48
fx_pedal::button_press_check (C++ func-

tion), 47

Index 119

DreamMaker FX Documentation

fx_pedal::button_pressed (C++ function), 46
fx_pedal::button_released (C++ function), 46
fx_pedal::bypass_control_enabled (C++

member), 47
fx_pedal::bypass_footswitch (C++ member),

47
fx_pedal::bypass_fx (C++ function), 45
fx_pedal::bypassed (C++ member), 47
fx_pedal::control_node_stack (C++ mem-

ber), 48
fx_pedal::enable_fx (C++ function), 45
fx_pedal::exp_pedal (C++ member), 48
fx_pedal::fx_pedal (C++ function), 44
fx_pedal::get_tap_freq_hz (C++ function), 45
fx_pedal::get_tap_interval_ms (C++ func-

tion), 45
fx_pedal::init (C++ function), 44
fx_pedal::instr_in (C++ member), 48
fx_pedal::instr_in_l (C++ member), 48
fx_pedal::instr_in_r (C++ member), 48
fx_pedal::led_center (C++ member), 48
fx_pedal::led_left (C++ member), 47
fx_pedal::led_right (C++ member), 47
fx_pedal::mic_in_l (C++ member), 48
fx_pedal::mic_in_r (C++ member), 48
fx_pedal::new_note (C++ member), 48
fx_pedal::new_tap_interval (C++ function),

45
fx_pedal::note_duration (C++ member), 48
fx_pedal::note_frequency (C++ member), 48
fx_pedal::parameter_service (C++ function),

47
fx_pedal::pot_bot_center (C++ member), 47
fx_pedal::pot_bot_left (C++ member), 47
fx_pedal::pot_bot_right (C++ member), 48
fx_pedal::pot_center (C++ member), 47
fx_pedal::pot_left (C++ member), 47
fx_pedal::pot_right (C++ member), 47
fx_pedal::pot_top_left (C++ member), 47
fx_pedal::pot_top_right (C++ member), 47
fx_pedal::print_instance_stack (C++ func-

tion), 47
fx_pedal::print_param_tables (C++ func-

tion), 47
fx_pedal::print_processor_load (C++ func-

tion), 47
fx_pedal::print_routing_table (C++ func-

tion), 47
fx_pedal::register_tap (C++ function), 47
fx_pedal::route_audio (C++ function), 44
fx_pedal::route_control (C++ function), 44
fx_pedal::run (C++ function), 44
fx_pedal::service (C++ function), 44

fx_pedal::service_button_events (C++
function), 47

fx_pedal::set_tap_blink_rate_hz (C++
function), 45, 46

fx_pedal::set_tap_blink_rate_ms (C++
function), 46

fx_pedal::spi_transmit_param (C++ func-
tion), 47

fx_pedal::tap_blink_only_enabled (C++
member), 47

fx_pedal::tap_control_enabled (C++ mem-
ber), 47

fx_pedal::tap_footswitch (C++ member), 47
fx_pedal::toggle_left (C++ member), 48
fx_pedal::toggle_right (C++ member), 48
fx_phase_shifter (C++ class), 101
fx_phase_shifter::bypass (C++ function), 102
fx_phase_shifter::depth (C++ member), 102
fx_phase_shifter::enable (C++ function), 102
fx_phase_shifter::feedback (C++ member),

102
fx_phase_shifter::fx_phase_shifter (C++

function), 101
fx_phase_shifter::input (C++ member), 102
fx_phase_shifter::output (C++ member), 102
fx_phase_shifter::print_params (C++ func-

tion), 102
fx_phase_shifter::rate_hz (C++ member),

102
fx_phase_shifter::set_depth (C++ function),

102
fx_phase_shifter::set_feedback (C++ func-

tion), 102
fx_phase_shifter::set_lfo_type (C++ func-

tion), 102
fx_phase_shifter::set_rate_hz (C++ func-

tion), 102
fx_pitch_shift (C++ class), 103
fx_pitch_shift::bypass (C++ function), 103
fx_pitch_shift::enable (C++ function), 103
fx_pitch_shift::freq_shift (C++ member),

104
fx_pitch_shift::fx_pitch_shift (C++ func-

tion), 103
fx_pitch_shift::input (C++ member), 104
fx_pitch_shift::output (C++ member), 104
fx_pitch_shift::print_params (C++ func-

tion), 103
fx_pitch_shift::set_freq_shift (C++ func-

tion), 103
fx_pitch_shift_fd (C++ class), 105
fx_pitch_shift_fd::bypass (C++ function),

106
fx_pitch_shift_fd::enable (C++ function),

120 Index

DreamMaker FX Documentation

106
fx_pitch_shift_fd::freq_shift_1 (C++

member), 107
fx_pitch_shift_fd::freq_shift_2 (C++

member), 107
fx_pitch_shift_fd::fx_pitch_shift_fd

(C++ function), 105, 106
fx_pitch_shift_fd::input (C++ member), 107
fx_pitch_shift_fd::output (C++ member),

107
fx_pitch_shift_fd::print_params (C++

function), 107
fx_pitch_shift_fd::set_freq_shift_1

(C++ function), 106
fx_pitch_shift_fd::set_freq_shift_2

(C++ function), 106
fx_pitch_shift_fd::set_vol_1 (C++ func-

tion), 107
fx_pitch_shift_fd::set_vol_2 (C++ func-

tion), 107
fx_pitch_shift_fd::set_vol_clean (C++

function), 107
fx_pitch_shift_fd::vol_1 (C++ member), 107
fx_pitch_shift_fd::vol_2 (C++ member), 107
fx_pitch_shift_fd::vol_clean (C++ mem-

ber), 107
fx_pot (C++ class), 53
fx_pot::fx_pot (C++ function), 54
fx_pot::has_changed (C++ function), 53
fx_pot::read_pot (C++ function), 54
fx_pot::val (C++ member), 54
fx_pot::val_inv (C++ member), 54
fx_pot::val_log (C++ member), 54
fx_pot::val_log_inv (C++ member), 54
fx_ring_mod (C++ class), 109
fx_ring_mod::bypass (C++ function), 110
fx_ring_mod::depth (C++ member), 110
fx_ring_mod::enable (C++ function), 110
fx_ring_mod::freq (C++ member), 110
fx_ring_mod::fx_ring_mod (C++ function), 109
fx_ring_mod::input (C++ member), 110
fx_ring_mod::output (C++ member), 110
fx_ring_mod::print_params (C++ function),

110
fx_ring_mod::set_depth (C++ function), 110
fx_ring_mod::set_freq (C++ function), 110
fx_slicer (C++ class), 111
fx_slicer::bypass (C++ function), 111
fx_slicer::enable (C++ function), 111
fx_slicer::fx_slicer (C++ function), 111
fx_slicer::input (C++ member), 112
fx_slicer::output_1 (C++ member), 112
fx_slicer::output_2 (C++ member), 112
fx_slicer::output_3 (C++ member), 112

fx_slicer::output_4 (C++ member), 112
fx_slicer::output_5 (C++ member), 112
fx_slicer::output_6 (C++ member), 112
fx_slicer::output_7 (C++ member), 112
fx_slicer::output_8 (C++ member), 112
fx_slicer::period (C++ member), 112
fx_slicer::print_params (C++ function), 111
fx_slicer::set_period_ms (C++ function), 111
fx_slicer::start (C++ member), 112
fx_switch (C++ class), 55
fx_switch::position (C++ member), 56
fx_variable_delay (C++ class), 113
fx_variable_delay::bypass (C++ function),

114
fx_variable_delay::depth (C++ member), 115
fx_variable_delay::enable (C++ function),

114
fx_variable_delay::ext_mod_in (C++ mem-

ber), 115
fx_variable_delay::feedback (C++ member),

115
fx_variable_delay::fx_variable_delay

(C++ function), 113, 114
fx_variable_delay::input (C++ member), 115
fx_variable_delay::mix_clean (C++ mem-

ber), 115
fx_variable_delay::mix_delayed (C++ mem-

ber), 116
fx_variable_delay::modulated_out (C++

member), 115
fx_variable_delay::output (C++ member),

115
fx_variable_delay::print_params (C++

function), 115
fx_variable_delay::rate_hz (C++ member),

115
fx_variable_delay::set_depth (C++ func-

tion), 114
fx_variable_delay::set_feedback (C++

function), 115
fx_variable_delay::set_lfo_type (C++

function), 115
fx_variable_delay::set_mix_clean (C++

function), 115
fx_variable_delay::set_mix_delayed (C++

function), 115
fx_variable_delay::set_rate_hz (C++ func-

tion), 114

Index 121

	Introduction
	Option 1: No programming at all!
	Option 2: Start building your own creations with Arduino
	What is that word, Arduino?

	Hear it in action
	Perpetuity
	Pentatonic Theramin
	Multitudes
	Stereo Reverb
	Polyphonic Guitar Synth

	Meet the Hardware
	Gen 1: The Dream Lemur
	Gen 2: The Beyonder

	Installation
	First time installation
	Updating the DreamMaker FX Arduino package

	The Anatomy of an Effect
	Tutorial #1: Basic Delay Pedal
	Basic Arduino anatomy
	1. Add the effects library of functions
	2. Add any effects or synthesis objects
	3. Route the effect into our pedal
	4. Add service function to our loop
	Bringing it all together
	Running the effect on hardware

	The basics of creating / adding effects
	The basics of routing audio
	Effect audio nodes
	System audio nodes
	Connecting nodes
	A few routing rules

	The basics of controlling effects
	Option 1: Using effect control nodes
	Option 2: Directly controlling parameters
	Option 3: Controlling effects with external sensors

	Buttons, Knobs and Lights
	Configuring the Buttons (aka Footswitches)
	1. Configuring the button as a pedal bypass switch
	2. Configuring the button to be a tap delay/tempo button
	3. Configuring the button to be a momentary switch
	4. Configuring the button to be a toggle switch
	Configuring the Knobs (aka Pots)
	Turning on and off the Lights (aka LEDs)

	Using the API
	Special parameters and constants

	Debugging Sketches
	General troubleshooting
	Issue: DM_FX volume not showing up when plugging pedal into USB port
	Issue: SAM-BA operation failed error while downloading an Arduino sketch
	Issue: After downloading my sketch, one footswitch LED is on and the other is periodically strobing
	Issue: I am getting a “bad CPU type in executable” error when compiling my sketch
	Issue: When building my sketch, error “dreammakerfx.h: No such file or directory”
	Placing the pedal in bootloader mode

	Class fx_pedal
	Class Documentation

	Class fx_led
	Class Documentation

	Class fx_pot
	Class Documentation

	Class fx_switch
	Class Documentation

	Class fx_adsr_envelope
	Inheritance Relationships
	Class Documentation

	Class fx_amplitude_mod
	Inheritance Relationships
	Class Documentation

	Class fx_arpeggiator
	Inheritance Relationships
	Class Documentation

	Class fx_biquad_filter
	Inheritance Relationships
	Class Documentation

	Class fx_compressor
	Inheritance Relationships
	Class Documentation

	Class fx_delay
	Inheritance Relationships
	Class Documentation

	Class fx_destructor
	Inheritance Relationships
	Class Documentation

	Class fx_envelope_tracker
	Inheritance Relationships
	Class Documentation

	Class fx_gain
	Inheritance Relationships
	Class Documentation

	Class fx_instrument_synth
	Inheritance Relationships
	Class Documentation

	Class fx_looper
	Inheritance Relationships
	Class Documentation

	Class fx_multitap_delay
	Inheritance Relationships
	Class Documentation

	Class fx_oscillator
	Inheritance Relationships
	Class Documentation

	Class fx_phase_shifter
	Inheritance Relationships
	Class Documentation

	Class fx_pitch_shift
	Inheritance Relationships
	Class Documentation

	Class fx_pitch_shift_fd
	Inheritance Relationships
	Class Documentation

	Class fx_ring_mod
	Inheritance Relationships
	Class Documentation

	Class fx_slicer
	Inheritance Relationships
	Class Documentation

	Class fx_variable_delay
	Inheritance Relationships
	Class Documentation

	Index

